Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетика растворения золота

Коротко рассмотрим кинетику растворения золота. При невысоких частотах вращения диска (до 150 об/мин) скорость растворения пропорциональна числу оборотов диска и в степени 0,5. Величины кажущейся энергии активации невелики (—15 и —6 кДж, соответственно в области малых концентраций ионов N" и при повышенных концентрациях цианида). Зависимость скорости перехода золота в раствор от концентрации цианида и парциального давления кислорода (рис. 31) имеет тот же вид, что и для серебра. Следовательно, так же как и серебро, золото растворяется в диффузионном режиме, причем при низких концентрациях цианида скорость процесса контролируется доставкой ионов N-, а при высоких концентрациях—молекул растворенного кислорода.  [c.88]


Эти результаты показывают, что в зависимости от условий эксперимента процесс анодного растворения золота может протекать либо по электрохимической, либо ио диффузионной кинетике. В последнем случае процесс лимитируется стадией диффузии ионов N к поверхности золота.  [c.96]

На рис. 25 изображена установка для изучения кинетики цианирования. Образец растворяемого металла I (золото, серебро) имеющий форму диска, запрессован в обойму 2 из какого-либо инертного материала (например, пластмассы), так что открытой остается только нижняя поверхность диска. Обойму с диском укрепляют на вращающемся валу 3 и помещают в сосуд 4 с цианистым раствором. Необходимый для растворения кислород подают по стеклянной трубке 5, нижний конец которой изогнут в виде кольца и имеет отверстия для выхода пузырьков газа. Если нужны исследования при давлении кислорода выше атмосферного, то реакционный сосуд накрывают герметичной крышкой 6, а кислород подают через отверстие в крышке непосредственно в газовое пространство над поверхностью раствора. О количестве перешедшего в раствор металла судят по анализу проб раствора, отбираемых через определенные промежутки времени через трубку 7.  [c.81]

При цианировании углистых руд кинетика перехода благородных металлов в раствор (рис. 117, кривая I) определяется соотношением скоростей двух противоположных процессов — растворения и сорбции. Поскольку скорость сорбции прямо пропорциональна концентрации благородных металлов, то в начальный момент цианирования, когда концентрация золота в растворе невелика, скорость растворения значительно превосходит скорость сорбции, и концентрация металла в растворе возрастает (см. рис.  [c.288]

Аналогичное действие должно оказывать увеличение числа оборотов дискового электрода, приводящее к снижению толщины диффузионного слоя в растворе. В то же время опыт показывает., чтд рост потенциала (см. рис. i.3) и числа оборотов диска (см. рис. 2.5) ускоряют СР Ад,Аи-сплавов с преобладанием серебра, замедляя переход от смешанной кинетики к диффузии А в сплаве. Физически этот результат вполне понятен и объясним с позиций развитых выше представлений о роли неравновесных вакансий в процессе СР сплавов. Так, возрастание Е и со интенсифицируют растворение серебра из А ,Аи-сплава, генерируя тем самым дополнительное число неравновесных вакансий на поверхности. В свою очередь, увеличение Nn вызывает рост коэффициента диффузии атомов серебра, что, как и показывали расчеты, препятствует смене лимитирующей стадии — от диффузии в растворе к диффузии в сплаве.. Если же потенциал и скорость вращения диска поддерживать постоянными, коэффициент диффузии понижается с ростом концентрации золота (см. табл. 2.2). Теперь, как и предсказывает теория, СР сплавов системы Ag—Аи тем раньше начинает контролироваться диффузией атомов Ag в сплаве, чем выше концентрация в нем золота [83J.  [c.71]


Кадрик и Келлог (1954 г.) использовали положения теории работы коррозионных гальванических элементов для объяснения основных особенностей кинетики растворения золота в цианистых растворах. Цель их работы состояла в том, чтобы доказать электрохимическую  [c.93]

Поверхность Лд,Ли-сплавов, содержащих более 50 ат.%1 золота и растворяющихся в кипящей концентрированной азотной кислоте, покрывается слоем практически чистого золота [91, 168]. Отметим, что и многокомпонентные сплавы, содер-- жащие Au,Pd и другие благородные металлы, полностью коррозионно устойчивы в агрессивных средах при суммарном содержании благородных компонентов свыше 50—55 ат.% [173]. Когда же содержание электроположительной составляющей ниже указанного предела, на поверхности корродирующих или аноднорастворяющихс сплавов присутствует, как уже отмечалось, электроотрицательный компонент. В итоге кинетика расворения сплава определяется факторами, влияющими на кинетику растворения чистого электроотрицательного компонента [20].  [c.167]

В работе [34] была исследована кинетика растворения в олове и оловянносвинцовых припоях тонких металлических покрытий с целью глубокого познания явлений, происходящих на межфазной границе. Проводилось принудительное разделение твердой и жидкой фаз при температуре исследования. Погружаемый в расплав припоя образец закрепляли в верхней его части зажимами из термостойкой кремнийорганической резины, расположенными на уровне зеркала расплава припоя. При извлечении образца из расплава жидкий металл удалялся, что позволяло получить поверхностные слои на образцах в том виде, в котором они существуют при температуре пайки. По данной методике была изучена кинетика растворения меди, никеля, серебра, золота, палладия и родия в олове и оловянносвинцовых припоях в интервале температур 200—330° С при выдержке от 0,2 до 60 с. Покрытия на исследуемых образцах, нанесенные гальваническим способом на латунные  [c.87]

Для снятия катодных поляризационных кривых использовали раствор 0,5 %-иого КС1, не содержащий цианида, но насыщенный кислородом при заданном парциальном давлении. Поэтому единственным процессом, протекающим на золотом электроде, было электрохимическое восстановлоние кислорода /202-ЬИ20= /2H202-b0H-—е. Соответствующие поляризационные кривые показаны на рис. 39. Видно, что при значительном смещении потенциала золотого электрода в отрицательную сторону процесс восстановления кислорода смещается из области электрохимической кинетики в область диффузионной кинетики, где скорость катодной реакции контролируется скоростью диффузии молекул растворенного кислорода к поверхности электрода. Признаками диффузионного контроля являются следующие  [c.96]

Как показали исследования, кинетика роста интер-металлидных фаз в ходе растворения определяется весьма своеобразной зависимостью. На начальных стадиях процесса резко увеличивается толщина слоя до максимума, после чего наблюдается или стабилизация фазы, например в случае меди (рис. 40), или ее растворение, иногда практически полностью, как в случае золота.  [c.88]

Вывод о том, что коррозия возможна только.в случае поверхностной гетерогенности, проявляющейся в наличии участков с разными электродными потенциалами, не подтверждается экспериментально. Например, спектрально чистый цинк в виде поликристаллического образца или монокристалла растворяется в соляной и серной кислотах, следуя электрохимической кинетике 117]. Чистая ртуть, имеющая вполне однородную (жидкую) поверхность, окисляется в достаточно сильных окислителях (НКОз, конц. Нг804). Возможно окисление ртути и ионами Н " в растворе Н1 за счет резкого сдвига ее равновесного потенциала в отрицательную сторону (вследствие образования весьма прочного иодидного комплекса), что приводит к ислючительно сильному снижению концентрации свободных ионов Нд [18]. Окисляются ионами Н и многие металлы, растворенные в ртути, например, тот же цинк. Число исследований электрохимического поведения металлов менее благородных, чем ртуть, в жидких амальгамах весьма велико. Вполне однородная поверхность жидкой амальгамы не препятствует окислению металлов, растворенных в ртути. Наконец, если для таких металлов как цинк легко найти более благородные примеси, играющие роль катодов, то какие могут быть более благородные примеси для золота или платины, которые электрохимически растворяются в достаточно сильных окислителях Таким образом, одно из логических следствий теории местных элементов, хотя не все авторы это следствие отчетливо формулируют, не выдерживает экспериментальной проверки.  [c.190]



Смотреть страницы где упоминается термин Кинетика растворения золота : [c.60]   
Металлургия благородных металлов (1987) -- [ c.89 ]



ПОИСК



Золото

Золото кинетика

Кинетика

Лак золотой

Растворение



© 2025 Mash-xxl.info Реклама на сайте