Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общий случай движения свободного твердого тела

ОБЩИЙ СЛУЧАЙ ДВИЖЕНИЯ СВОБОДНОГО ТВЕРДОГО ТЕЛА  [c.189]

Рассмо грим общий случай движения свободного твердого тела, т. е. тела, имеющего шесть степеней свободы. Покажем, что самое общее движение свободного твердого тела можно  [c.189]

Скорость поступательного движения образует произвольный угол с осью вращения. Сложное движение, совершаемое телом в этом случае (рис. 210, а), представляет собой движение, рассмотренное в 63 (общий случай движения свободного твердого тела).  [c.178]


Случай V ы Ф О, Vq ф О тл Vq пе (s> — общий случай движения свободного твердого тела. Пусть после приведения угловых и поступательных скоростей к центру О получены векторы ш и t o (рис. 438). Заменим поступательную скорость Vq парой угловых скоростей произвольной величины о>/ и оз/ с моментом и = и плечом ОК = d = и/со]. Сложим по правилу параллелограмма векторы угловых скоростей м и в точке О  [c.353]

Рассмотрим общий случай движения свободного твердого тела, т. е. тела, имеющего шесть степеней свободы. Покажем, что самое общее движение свободного твердого тела можно представить состоящим из поступательного движения вместе с какой-либо точкой тела и вращательного движения вокруг этой точки.  [c.176]

ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА, ИМЕЮЩЕГО ОДНУ НЕПОДВИЖНУЮ ТОЧКУ, И ОБЩИЙ СЛУЧАЙ ДВИЖЕНИЯ СВОБОДНОГО ТВЕРДОГО ТЕЛА  [c.375]

Уравнения движения свободного твердого тела в общем случае его движения. Рассмотрев частные случаи движения твердого тела, перейдем к изучению самого общего случая движения свободного твердого тела, т. е. такого тела, которое может совершать любое перемещение в пространстве. Пусть данное свободное твердое тело каким-то  [c.394]

Глава Хт, Общий случай движения свободного твердого тела  [c.397]

И ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА, ИМЕЮЩЕГО ОДНУ НЕПОДВИЖНУЮ ТОЧКУ 1. Общий случай движения свободного твердого тела  [c.183]

До сих пор мы изучали частные случаи движения твердого тела. Рассмотрим теперь общий случай движения свободного твердого тела, т. е. такого тела, которое может получить любое перемещение в пространстве. С таким общим случаем движения твердого тела мы встречаемся, например, при изучении движения артиллерийского снаряда.  [c.344]

В гл. VII мы рассмотрели два частных случая движения твердого тела плоскопараллельное движение и вращение вокруг неподвижной оси в настоящей главе мы рассмотрим самый общий случай движения свободного твердого тела в пространстве.  [c.248]

ОБЩИЙ СЛУЧАЙ ДВИЖЕНИЯ Свободного твердого тела Ггл. ххп  [c.358]

Общий случай движения свободного твердого тела. Уравнения движения свободного твердого тела. Разложение этого движения на поступательное движение вместе с полюсом и движение вокруг полюса. Определение скоростей и ускорении точек свободного твердого тела.  [c.7]


Сейчас мы рассмотрим самый общий случай движения твердого тела по отношению к одной фиксированной (основной) системе отсчета. Таким движением является движение свободного твердого тела. Это движение, оказывается, тоже будет слагаться из серии мгновенных винтовых движений. К такому выводу приводит теорема Шаля, которая по отношению к свободному телу играет ту же роль, что и теорема Эйлера — Даламбера по отношению к твердому телу, имеющему неподвижную точку ( 10, п. 1), и которая нами уже была рассмотрена для случая плоскопараллельного движения ( 9, п. 2).  [c.153]

Уравнения (20) являются кинематическими уравнениями движения свободного твердого тела в общем случая его движения. Этих уравнений шесть, т. е. столько, сколько степеней свободы у свободного твердого тела. Первые три уравнения (20) определяют переносное движение тела вместе с точкой О, вторые три уравнения определяют вращательное движение вокруг этой точки.  [c.179]

Эта теорема — частный случай общих заключений о движении свободного твердого тела, найденных в 70. Мы предлагаем найти самостоятельное доказательство для плоскопараллельного движения, воспользовавшись возможностью приведения вопроса об изучении плоскопараллельного движения к изучению движения прямой в плоскости.  [c.185]

Мы рассмотрели случай вращательного переносного движения. Но и в общем случае, когда переносное движение, как и движение свободного твердого тела (см. 88), слагается из поступательного и вращательного, равенства (79) и (81) сохраняют свой вид, с той лишь разницей, что в равенстве (81) величина гг),ц.р, вместо формулы (80), будет вычисляться по формуле (72).  [c.220]

По формуле (1Г) вычисляется скорость в момент времени t в любой точке М пространства из малой окрестности точки О, если в этот же момент известны скорость, вихрь скорости и тензор скоростей деформаций 5 в точке О. Формула (1Г) является обобщением на случай сплошной среды формулы (21) (см. 8 гл. 4) для скорости точки свободного твердого тела в общем случае его движения. Для твердого тела Уд = 0. Кроме того, для сплошной среды роль угловой скорости выполняет половина вихря вектора скорости в точке О.  [c.216]

В 1885 г. Н. Е. Жуковский [36] рассмотрел общий случай движения твердого тела с полостью, заполненной идеальной жидкостью, и показал, что если полость заполнена несжимаемой жидкостью целиком, то никаких колебаний жидкости не возникает и под действием внешних сил такая система движется как твердое тело, масса которого равна массе твердого тела с жидкостью, а момент инерции меньше момента инерции твердого тела с затвердевшей жидкостью. Различие моментов инерции объясняется тем, что стенки полости не могут принудить жидкость вращаться, как твердое тело. Это различие зависит от формы полости и от расположения оси вращения по отношению к этой полости. Колебания жидкости внутри бака возникают, когда она имеет свободную поверхность.  [c.342]

ВОЗМОЖНОСТЬ изучить движение несвободной материальной системы рассмотреть отдельно каждую ее точку и применить к ней уравнение mw==F- -N, причем в общем случае неясно, как в дальнейшем исключить все неизвестные реакции связей, без чего нельзя интегрировать эти уравнения. В применении к твердому телу это значило бы, что его надо разбить на элементарные частицы, для каждой из них написать указанное уравнение и каким-то образом исключить силы взаимодействия частиц тела друг с другом. Уравнения (10.5), (10.11) полностью решают поставленную задачу для случая свободного твердого тела указанные силы взаимодействия частиц тела друг с другом исключены и вместо бесчисленного множества уравнений для каждой точки тела мы получили шесть уравнений, определяющих движение тела в целом найдя это движение, мы сможем найти и движение каждой точки тела.  [c.258]


Ниже мы рассмотрим вариационную постановку задачи о динамическом росте трещины в линейно-упругих, а также нелинейных (упругих или неупругих) телах. Вначале исследуем динамику развития трещины в линейно-упругом материале. Рассмотрим два момента времени t и + в соответствии с которыми переменные, описывающие поля, обозначаются индексами 1 и 2. Пусть в момент времени ti объем тела будет l/ , внешняя граница тела с заданными нагрузками Т будет 5<л, поверхность трещины равна 5 . Предположим, что между моментами ti и ta площадь трещины изменяется на AS = S 2 — 5 . Для простоты считаем, что поверхность трещины свободна от приложенных нагрузок. Более общий случай, учитывающий объемные силы и нагрузку, приложенную к поверхности трещины, рассмотрен в [9, 10]. Принцип виртуальной работы, определяющий движение твердого тела между моментами ti и г г, когда происходит рост трещины, определяется следующим образом 19,10  [c.274]

Общий случай движения свободного твердого тела можно представить в виде мгновенного винтового движения или в виде двух мгиовен-ных вращений вокруг скреш,ивающихся осей. Если принять за полюс какую-либо точку С мгновенной винтовой оси, то скорость любой точки тела М определится как диагональ прямоугольника, построенного на скорости полюса и и вращательной скорости точки М вокруг мгновен-  [c.354]

Общий случай движения свободного твердого тела. Предположим, что к свободному твердому телу, движущемуся как угодно в пространстве, приложепрл внешние силы Pf, Pf,. .., P r..... Pf,  [c.176]

Общий случай движения свободного твердого тела. Рассмотрим наиболее общий случай движения твердого тела, когда оно является свободным и может перемещаться как угодно по отношению к системе отсчета Ох1у1г1 (рис. 207). Установим вид уравнений, определяющих закон рассматриваемого движения. Выберем произвольную точку А тела в качестве полюса и проведем через нее оси Ах, у[г1, которые при движении тела будут перемеш,аться вместе с полюсом поступательно. Тогда положение тела в системе отсчета OXiy Zl будет известно, если мы будем знать положение полюса А, т. е. его координаты Х1А, У1А И положение тела по отношению к осям Ах[у1г, определяемое, как и в случае, рассмотренном а 86, углами Эйлера р, ф, О (см. рис. 200 иа рис. 207 углы Эйлера не  [c.210]

Рассмотрим наиболее общий случай движения твердого тела, когда оно является свободным и может перемещаться как угодно по отношению к системе отсчета ОххУ г (рис. 180). Установим вид уравнений, определяющих закон рассматриваемого движения. Выберем произвольную точку А тела в качестве полюса и проведем через нее оси Ax iy[z i, которые при движении тела будут перемещаться вместе с полюсом поступательно. Тогда положение тела в системе отсчета Ох Угг будет известно, если будем знать положение полюса Л, т. е. его координаты Xia Ууа, ia, и положение тела по отношению к осям Ax[y iZ[, определяемое, как и в случае, рассмотренном в 60, углами Эйлера ф, i 3, 0 (см. рис. 172 на рис. 180 углы Эйлера не показаны,чтобы не затемнять чертеж). Следовательно, уравнения движения свободного твердого тела, позволяющие найти его положение по отношению к системе отсчета ОххУ г в любой момент времени, имеют вид  [c.153]

Общий случай движения твердого тела. Движение свободного твердого тела в общем случае mojkfio разложить на два составляющих движения на переносное поступательное движение вместе с центром масс и относительное сферическое движение относительно центра масс (рис. 156). Тогда кинетическая энергия тела определится по формуле Кенига  [c.181]

Решение задачи о движении твердого тела вокруг неподвижной точки позволяет изучить также и общий случай движения свободного тве эдого тела, так как это движение слагается из поступательного движения, определяемого движением центра масс тела, и вращательного движения вокруг центра масс как неподвижной точки.  [c.696]

Наиболее общим случаем движения твердого тела по отношению к данной системе отсчета является произвольное движение свободного тела. Это двимсение будет рассмотрено в 12 после изучения сложного движения твердого тела.  [c.138]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]



Смотреть страницы где упоминается термин Общий случай движения свободного твердого тела : [c.180]   
Смотреть главы в:

Курс теоретической механики  -> Общий случай движения свободного твердого тела

Краткий курс теоретической механики  -> Общий случай движения свободного твердого тела

Курс теоретической механики 1974  -> Общий случай движения свободного твердого тела

Курс теоретической механики 1983  -> Общий случай движения свободного твердого тела

Курс теоретической механики  -> Общий случай движения свободного твердого тела

Теоретическая механика  -> Общий случай движения свободного твердого тела

Краткий курс теоретической механики 1970  -> Общий случай движения свободного твердого тела

Курс теоретической механики Часть1 Изд3  -> Общий случай движения свободного твердого тела



ПОИСК



Движение в случае G2 ВТ

Движение свободного твердого тела

Движение свободное

Движение твердого свободного

Движение твердого тела

Движение твердого тела вокруг неподвижной точки I Движение свободного твердого тела в общем случае

Движение твердого тела, имеющего одну неподвижную точку, и общий случай движения свободного твердого тела

Движение твердых тел

ОБЩИЙ СЛУЧАЙ ДВИЖЕНИЯ СВОБОДНОГО АБСОЛЮТНО ТВЁРДОГО ТЕЛА Геометрическое изучение движения свободного абсолютно твёрдого тела

Общее движение твёрдого тела

Общий случай

Общий случай движения свободного твердого тела и движение твердого тела, имеЯнцего одну неподвижную точку

Общий случай движения твердого тела

Свободное тело общий случай

Сферическое движение твердого тела. Общий случай движения свободного твердого тела

Тело свободное

Тело твердое свободное

Уравнения движения свободного твердого тела в общем случае Разложение движения твердого тела на поступательное движение и движение вокруг некоторой точки



© 2025 Mash-xxl.info Реклама на сайте