Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристика пассивного состояния металлов

ХАРАКТЕРИСТИКА ПАССИВНОГО СОСТОЯНИЯ МЕТАЛЛОВ  [c.303]

Характеристика пассивного состояния металлов в  [c.57]

Характеристика пассивного состояния металлов....................181  [c.5]

В зависимости от условий (температура, характер раствора, наличие пассиваторов или активирующих ионов и т.д.), расположение металлов в ряду повышения степени их пассивного состояния, может значительно изменяться. Характеристики совершенства пассивного состояния металла, наряду с его термодинамической стабильностью, часто являются основными факторами, определяющими коррозионное поведение металла.  [c.50]


Характер анодных кривых, в частности величины ф , и Афп, зависит от природы металла и среды. На рис. VI,4 представлены три кривые для железа, хрома и циркония [5]. Легко видеть, что ф " отрицательнее, чем ф , т. е. хром пассивируется легче, чем железо. Вместе с тем, скорость растворения хрома в пассивном состоянии примерно на 2 порядка ниже, чем железа. Цирконий в исследованных условиях вообще не проявляет склонности к активному растворению. При анодной поляризации скорость нроцесса падает до п => Ю" а см , а затем вяло растет, оставаясь в пределах пп = 10" —10 а см , т. е. сохраняя весьма малую величину. Характеристика пассивного состояния некоторых металлов представлена в табл. VI, .  [c.199]

Характеристики пассивного состояния некоторых металлов приведены на рис. 7 и в табл. 4.  [c.12]

В процессе растворения металла на его поверхности одновременно протекают две электродные реакции анодное растворение металла и катодное восстановление окислителя. При достаточно длительном контакте металла с агрессивной средой коррозионный процесс стабилизируется и наступает так называемое стационарное состояние, характеризующееся равенством скоростей анодной и катодной реакций (/а = /к) и соответствующим значением потенциала кор. называемым стационарным или коррозионным потенциалом. Из условия стационарности следует, что для замедления скорости растворения металла достаточно снизить скорость хотя бы одной из электродных реакций. Основной характеристикой скорости анодного и катодного процесса являются их поляризационные кривые — зависимости анодной /з и катодной /к плотностей тока от потенциала Е. На рис. 5.1 приведена обобщенная потенциостатическая анодная поляризационная кривая. Кривые такого рода более подробно описаны в работах 14, 5, 6, 7]. Область АВ называется областью активного растворения. Вначале скорость растворения металла экспоненциально увеличивается с увеличением потенциала по уравнению Тафеля. В переходной области ВС происходит пассивация металла, приводящая к резкому замедлению коррозии. Потенциал максимума тока называется критическим потенциалом пассивации Е р, а соответствующая ему величина — критической плотностью тока пассивации /кр. Область D, характеризующаяся малыми скоростями коррозии (обычно 10- 4-10 А/см ), практически независимыми от потенциала, называется областью устойчивого пассивного состояния или пассивной областью. Пассивное состояние обусловлено образованием на поверхности металла тонких защитных пленок оксид-  [c.254]


Было показано, что такие металлы, как титан, хромистые и нержавеющие стали, будучи легированы небольшими добавками Р(1, Р1 (0,1—1,0%), легко переходят в пассивное состояние в условиях, где эти металлы без добавок активно растворяются (например, растворы Н28 04, НС1 и др.) [1—9]. Титан, который обладает высокой пассивируемостью в ряде сред, особенно интересен в этом отношении, поскольку его потенциал полной пассивации очень сильно смещен в отрицательную сторону, что особенно благоприятствует созданию сплавов с катодными добавками. Поскольку действие таких добавок связывается с их влиянием в основном на катодный процесс [2] и поскольку работу такой системы можно рассматривать как работу гальванической пары Т1 (анод) — легирующая добавка (катод), было интересно исследовать поведение титана в гальванических парах с чистыми катодными металлами, изучить и сравнить катодное поведение этих металлов, а также выявить роль различных катодных характеристик (перенапряжение водорода, предельный диффузионный ток по кислороду, перенапряжение ионизации кислорода, собственный стандартный потенциал добавки) в процессах пассивации титана в результате контакта с катодными металлами.  [c.292]

Склонность металлических сплавов к пассивности можно определить, изучив зависимость скорости его коррозионного растворения от потенциала или получив анодную поляризационную кривую (лучше потенциостатическим методом). Основными электрохимическими характеристиками, определяющими пассивируемость металла, как отмечалось, являются потенциал начала пассивации потенциал полной пассивации У . плотность тока анодного пассивирования / и плотность тока растворения в пассивном состоянии . Определив изменение этих характеристик титана при легировании его каким-либо элементом, можно судить о пригодности этого элемента как компонента в коррозионно-стойком сплаве. Таким образом, исследование анодной поляризации потенциостатическим методом и определение зависимостей скорости коррозии от потенциала может служить основой для выбора легирующих компонентов и построения теории коррозионно-стойкого легирования не только применительно к титану, но и к другим металлам, устойчивость которых определяется пассивным состоянием.  [c.145]

Современное представление о механизме электрохимической коррозии позволяет наиболее точно определить явление пассивности на основе характеристики контроля коррозионного процесса (см. главу VII). По нашему мнению [16], на осно-вании развитой теории электрохимической коррозии наиболее рационально определять явление пассивности металлов следующим образом пассивность — состояние повышенной коррозионной устойчивости металла или сплава (в условиях, когда с термодинамической точки зрения они являются вполне реакционноспособными), вызванное торможением анодного процесса, т. е. пассивным состоянием будет состояние коррозионной устойчивости, вызванное возрастанием анодного контроля.  [c.295]

Следует помнить, что характеристика коррозионного поведения пе имеет абсолютного значения, а является относительной, действительной лишь для определенных условий. Например, мы можем утверждать, что в большинстве условий для хрома характерно пассивное состояние, но это не означает, что хром не может находиться в других условиях в активном состоянии. Анализ коррозионного поведения различных металлов позволяет заключить, что наличие у металла в данной агрессивной среде заметной коррозионной устойчивости по отношению к электрохимической коррозии определяется одной из следующих причин  [c.431]

Анализируя литературные источники и производственные данные (в частности, ОГКМ, АНК "Башнефть", ОАО "Татнефть") о применении конструкционных материалов для оборудования и трубопроводов, работающих в сероводородсодержащих средах, можно сделать вывод о том, что коррозия углеродистых сталей в таких условиях неотвратима, поскольку образующиеся продукты коррозии не способствуют наступлению пассивного состояния металла ни при каких комбинациях внешних и внутренних факторов. В связи с отмеченным, действенным направлением по повышению долговечности конструкций может быть применение коррозионно-стойких материалов и покрытий, предотвращающих или снижающих интенсивность воздействия рабочих сред за счет рационального использования электрохимических характеристик материала подложки и покрытия, а также барьерного эффекта.  [c.27]


Анодная активация металла может проходить при наличии более близких электрохимических характеристик растворяющегося металла к активирующему аниону, чем к кислороду, т. е. при более высокой активности данных анионов к металлу. Эта активность может быть оценена по величине изменения изобарноизотермического потенциала реакции активации [30]. Выполнение данного термодинамического условия определяет принципиальную возможность нарушения пассивного состояния металла и активирования его поверхности. Для осуществления такой возможности требуется выполнение кинетических условий, т. е. достижение необходимого положительного анодного потенциала и наличие в растворе большого количества активирующих анионов.  [c.30]

Пассивность ряда неблагородных металлов (хрома и нержавеющей стали) несомненно обязана присутствию на их поверхности очень тонкой пленки окисла или адсорбированного кислорода, хотя механизм пассивности, несмотря на большое число проведенных исследований, еще дебатируется Хатуел [171] показал, что поате шлифовки при отсутствии воздуха (в атмосфере аргона) сплавы железа, содержащие 3— 25% хро,ма, имеют постоянный потенциал растворения при измерении такж в отсутствии воздуха. После соприкосновения с воздухом сплавы, содержащие по крайней мере 12% хрома, обнаруживают облагораживание поверхности с потенциальной характеристикой пассивного состояния. В этом с.пу-чае, следовательно, пассивация не является специфическим свойством богатых хромом сплавов, а объясняется окислением, которое начинается только при определенном содержании хрома.  [c.76]

Даже для высоколегированных нержавеющих сталей пассивное состояние в морской воде неустойчиво, и они склонны к питтингообразова-нию. Поэтому важная характеристика коррозионной стойкости металлов в морской воде — потенциал питтингообразования. В морской воде смещение потенциала питтингообразования в отрицательную область происходит при увеличении концентрации ионов хлора, повышении температуры и pH.  [c.14]

Важнейшими характеристиками склонности металлов к переходу в пассивное состояние являются потенциал пассивации и критический ток пассивацииг р (рис. 1).  [c.14]

Нержавеющие стали — сплавы на основе железа, легированные хромом или хромом и никелем, а также и другими элементами, коррозионная стойкость которых обусловлена, в первую очередь, их пассивными свойствами. Поэтому проводят многочисленные исследования по изучению влияния различных факторов—состава, среды, температуры, на повышение пассивируемости сталей этого класса. Электрохимическое поведение основных компонентов этих сталей—железа, хрома, никеля в 1 iVH2S04 показано па рис. 44 [27]. Очевидно, что хром имеет наиболее отрицательное значение потенциалов пассивации Еп и полной пассивации Еап-, а также и минимальный ток растворения в пассивном состоянии fnn по сравнению с железом и никелем. В соответствии с этим при повышении содержания хрома в сплавах с железом происходит смещение Еа и Еаа в отрицательную сторону, а также наблюдается уменьшение in и inn (рис. 45). Многими исследователями было отмечено, что изменение этих характеристик происходит наиболее резко при увеличении содержания хрома от 12 до 13%, как показано на рис. 46 [118]. При легировании железа никелем пассивируемость сплавов также возрастает [84, 119], но в гораздо меньшей степени, чем при легировании железа хромом. Пассивные свойства сплавов Fe — Ni являются промежуточными между пассивными свойствами чистых металлов. Введение в состав хромистых сталей 8% Ni и более приводит к уменьшению тока пассивации in но смещает потенциал пассивирования Еа в положительную сторону [84, 118] (рис. 47). Легирование нержавеющих сталей небольшими количествами  [c.73]

Рассмотрим, как изменяются основные пассивационные характеристики титана и сплавов системы Fe—Сг под влиянием легирующих компонентов. Характер пассивации металла или сплава определяется, как известно, кинетикой анодных процессов при переходе сплава в пассивное состояние, при нахождении их в пассивном состоянии и при возможном нарушении пассивности. Эти данные могут быть получены на основании анализа анодных поляризационных кривых. При некотором упрощении задачи построение кривых заменяют определением местоположения характерных точек (рис. 39). Здесь благоприятное смещение критичес-  [c.127]

Никель является немного более электроотрицательным металлом, чем медь (см. табл. 2), но он заметно положи-тельнее, чем железо, хром, цинк или алюминий. Равновесный потенциал никеля —0,25 В, стационарный потенциал в 0,5 н. Na l—0,02 В. В отличие от меди, никель обладает заметной склонностью к переходу в пассивное состояние (см. гл. II). Эти обстоятельства в значительной мере и определяют коррозионную характеристику никеля.  [c.226]

Таким образом, величина стационарного потенциала Фсш>т- е. его положение относительно характерных потенциалов фа и переп на анодной поляризационной кривой, определяющих границы устойчивого пассивного состояния, является важной характеристикой коррозионного поведения металлов и сплавов.  [c.93]

С точки зрения термодинамики титан является очень неустойчивым металлом (его нормальный потенциал равен —1,63 в), а высокая коррозионная устойчивость титана в большинстве химических сред объясняется образованием на его поверхности заш,итных окисных пленок, исключаюш их непосредственный контакт металла с электролитом. Вследствие этого было интересно исследовать электрохимическое и коррозионное поведение титана в условиях поляризации его переменным током различной частоты, когда в катодный полупериод тока может происходить частичное или полное разрушение пассивного состояния, а в анодный полупериод — его возникновение. Подобные исследования кроме чисто научного интереса представляют, несомненно, и определенную практическую ценность, поскольку титан и его сплавы начинают все шире внедряться в технику как новый конструкционный материал с особыми свойствами и разносторонняя характеристика его коррозионных свойств в различных условиях становится необходимой. Помимо этого, можно полагать, что изучение электрохимических и коррозионных процессов путем наложения на исследуемый электрод переменного тока различной частоты и амплитуды при дальнейшем совершенствовании может явиться наиболее подходяш,им методом для исследования скоростей электродных процессов, а следовательно, и методом изучения механизма электрохимической коррозии и пассивности металлов. Цель настояш,ей работы — выяснение основных факторов, определяющих скорость коррозии титана под действием переменного тока, а также установление механизма образования и разрушения пассивирующих слоев, возникающих на поверхности титана  [c.83]


Таким образом,при катодной поляризации титана, находящегося в пассивном состоянии в кислых средах, можно наблюдать отрицательный защитный эффект. Этот эффект на титане может проявиться помимо катодной поляризации также и при контактировании его с электроотрицательными металлами. Проявлением отрицательного защитного эффекта объясняется активирование титана в разбавленных растворах серной и соляной кислот в паре с алюминием, а также в контакте с активным титаном, находящимся в щели при ограниченном доступе кислорода. Установившаяся скорость коррозии титана в паре с активным электроотрицательным металлом будет зависеть от стационарного электродного потенциала контактируемого металла, его поляризационных характеристик и соотношения площадей контактируемого металла и титана. Наиболее опасным будет случай, когда общий потенциал такой пары будет лежать около потенциала максимума коррозии титана на кривой скорость 1Коррозин — потенциала (фиг. 51), что, очевидно, будет соответствовать наибольшей скорости разрущения титана под влиянием анодного контакта.  [c.92]

Пассивируемость металла или спла ва не может быть однозначно охарактеризована одним каким-то параметром. Наиболее полная характеристика может быть получена на основании анализа анодных поляризационных кривых и определения некоторых характерных точек этой кривой Пассивируемость коррозионной системы облегчается при уменьшении плотности предельного тока пассивирования и при смещении потенциалов начала и конца пассивации и Е ,п в отрицательную сторону (см. рис. 44). Наоборот, смещение потенциалов анодного пробивания защитной пленки (питтингообра-301вания) Ent и транспаоаивности Е. в положительную сторону расширяет область устойчивой пассивности. Уменьшение тока растворения в пассивном состоянии /п.п повышает степень совершенства пассивности (снижает скорость коррозии из пассивного состояния).  [c.177]

Коррозионностойкие (нержавеющие) стали применяют для изготовления деталей машин и конструктивных элементов (в основном сварных), работающих в различных афессивных средах (влажная атмосфера, морская вода, кислоты, растворы солей, щелочей, расплавы металлов). Легирование коррозионностойких сталей преследует достижение высокой коррозионной СТОЙКОСТИ в рабочей среде и обеспечение заданного комплекса физико-механических характеристик. Высокая коррозионная стойкость обеспечивается переходом стали в пассивное состояние. Легко пассивирующимися металлами являются алюминий, хром, никель, титан и др. Хром один из основных легирующих элементов коррозионностойких сталей и обычно находится в пределах от 11 до 30 %. Никель в сплавах с железом повышает коррозионную стойкость, стабилизирует аустенитную структуру и позволяет создать аустенитные хромоникелевые стали с высокой коррозионной стойкостью в сильных афессивных кислотах (соляной, серной).  [c.393]

В табл. 73 дана характеристика пятнадцати важнейших металлов по основным показателям коррозионных свойств равновесному электродному потенциалу, стационарному потенциалу коррозии в 0,5 N растворе Na l, степени пассивного состояния в этом же растворе и качественной  [c.430]

Анодная поляризация в активных средах. В последние годы для исследования явления пассивности металлов стали широко использовать потенциостатический метод снятия анодных толяризационных кривых, который заключается в определении плотности внешнего поляризационного тока или скорости коррозии металла при каждом задаваемом постоянном значении потенциала, автоматически поддерживаемом электронным прибором [129]—[133]. Этот метод дает возможность исследовать электрохимические характеристики металла в области перехода из активного состояния в пассивное, и наоборот. При исследовании поляризации металла гальваностатическим методом (поддержание постоянной плотности тока) в этой области. потенциал металла скачкообразно смещается в положительную сторону до потенциала выделения кислорода. Таким образом, исключается возможность изучения поведения металла в переходной области пассивно-активного состояния. Потенциостатическим методом, в частности, удается определить потенциал металла, при котором он начинает переходить из активного состояния в пассивное, и потенциал полного пассивирования.  [c.92]


Смотреть страницы где упоминается термин Характеристика пассивного состояния металлов : [c.11]    [c.305]    [c.164]    [c.343]    [c.6]    [c.89]    [c.196]    [c.36]    [c.80]    [c.284]   
Смотреть главы в:

Курс теории коррозии и защиты металлов  -> Характеристика пассивного состояния металлов



ПОИСК



Металл пассивное состояние

Металлы характеристика

Пассивность

Пассивность Характеристики пассивного состояния

Состояние пассивное

Характеристики состояния



© 2025 Mash-xxl.info Реклама на сайте