Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементы геометрии деталей

ЭЛЕМЕНТЫ ГЕОМЕТРИИ ДЕТАЛЕЙ  [c.30]

Наличие внешних сил не является обязательным условием роста внутренних усилий в теле. Уравновешенные в отдельных объемах системы напряжений могут возникать в реальных телах, например при изменении температуры, благодаря стесненному расширению — сжатию элементов тел (деталей) сложной геометрии или наличию в них фаз с различными теплофизическими константами, при фазовых превращениях и др. [109].  [c.12]


Повернем деталь так, чтобы оси отнесения оказались попарно параллельными трем взаимно перпендикулярным плоскостям Я,, Яг, Щ, как показано на рис. 5, в. Очевидно, что при таком положении элементы детали спроецируются хотя бы на одну из плоскостей проекций без искажения, а сами проекции будут представлять простые изображения. Далее совместим все плоскости Я,, Яг и Яз в одну плоскость чертежа, параллельную или совпадающую с плоскостью Яа. Для этого плоскость Я требуется вращать вокруг оси х, а плоскость Яэ —вокруг оси Z по направлениям, указанным стрелками. На плоскости чертежа, которая будет являться как бы носителем трех плоскостей проекции — Я,, Яг, Яз, получится комплекс изображений или чертеж (в начертательной геометрии его называют эпюрой, см. рис. 5, г). Обратите внимание, как совместились проекции проецирующих лучей (линий) на комплексном чертеже (их называют линиями связи). Очень важно запомнить, пользуясь этими линиями, взаимное расположение изображений. Изображение на плоскости Яг является главным изображением — главным видом. Вид —это изображение обращенной к наблюдателю видимой части поверхности предмета. Строго под главным видом располагается вид сверху.  [c.13]

Выбор размеров основывается на всестороннем анализе геометрии форм, составляющих деталь. Анализ геометрической структуры детали, т. е. мысленное расчленение ее на простые геометрические элементы, определяет порядок построения проекций, простановку размеров формы этих элементов и их возможного расположения.  [c.207]

Третий раздел включает элементы графической статики и кинематики, а также кинематической геометрии. Четвертый раздел содержит сведения, касающиеся выбора и указания в конструкторской документации обозначений стандартных конструктивных и технологических элементов, материалов изделий, показателей свойств и качества поверхностей. В пятом разделе представлены изображения и обозначения резьб, крепежных деталей и обычных соединений с резьбой в соответствии с действующими стандартами.  [c.3]

Параметрами программы служат размеры детали (входные параметры) и идентификатор получаемой модели ГИ (выходной параметр). Отдельные размеры могут принимать нулевые значения, что влечет исключение из чертежа соответствующих конструктивных элементов. Таким образом, задавая различные значения параметров, можно получать чертежи различных по геометрии и размерам деталей. В общем случае параметрами могут быть результаты проектных расчетов.  [c.72]


Практика эксплуатации реальных деталей показывает, что из-за концентрации напряжений, неточности сборки, влияния среды и т. п. стадия разрушения, состоящая из возникновения и развития трещины, начинается задолго до исчерпания несущей способности детали. При этом прочность материала детали не реализуется. В результате постепенного роста трещины длительность процесса разрушения от начала до полного разрушения занимает 90 % времени жизни детали и более. Вот почему практически интересно не столько наличие трещины, сколько скорость ее роста в lex или иных условиях. В связи с этим основная задача механики разрушения — изучение прочности тел с трещинами, геометрии трещин, а также разработка критериев несущей способности элементов конструкций с трещинами.  [c.728]

Скорость роста длинных усталостных трещин зависит от коэффициента интенсивности напряжения (КИН), и между ними установлена S-образная зависимость при неизменном уровне напряжения, которая аналогична зависимости, представленной на рис. 3.1а. Вид и положение кинетической кривой существенно зависят от условий нагружения и геометрии детали. Поэтому далее, рассматривая процесс развития разрушения, мы будем разделять нагружение материала (образец) в тестовых условиях и при многопараметрическом воздействии на деталь в лаборатории, на стенде или в эксплуатации. Тестовые условия используют для определения механических характеристик материала, когда применительно к испытаниям стандартных образцов оговорены их размеры, частота нагружения, температура, степень агрессивного воздействия окружающей среды и прочее. Элементы конструкций, в большинстве случаев, существенно отличаются по геометрии от стандартных образцов, и условия их нагружения, как правило, не соответствуют тестовым условиям опыта.  [c.132]

Смыкание берегов трещин целесообразно в ряде конструктивных элементов, имеющих сложный профиль сечения, для которых необходимо сохранить плотность стыка берегов трещины. Речь идет о воздействиях на элемент конструкции, не меняющих его геометрию и вес, что важно, например, для вращающихся деталей двигателей, в частности роторных лопаток с поверхностными трещинами размером до 2,5 мм по поверхности (Заявка № 447488 Швеция. Опубл. 07.11.86). Деталь, например лопатку, устанавливают в ре-  [c.452]

Таким образом, вид предельного состояния и, следовательно, способы его описания существенно зависят от конструктивных особенностей деталей и режима нагружения. В связи с этим важное значение приобретает определение полей напряжений и деформаций в каждом конкретном случае расчета долговечности элементов машин в зависимости от их геометрии и теплового состояния.  [c.194]

При разработке алгоритмов и программ автоматического конструирования и технологического проектирования особо выделяются сборочные базы, которые принимаются в качестве исходных при описании геометрии и положения элементов конструкций. При этом следует иметь в виду, что процесс обработки (формообразования) элементов конструкций условно (по аналогии) рассматривается как процесс их сборки из отдельных элементарных объемов, ограниченных элементарными поверхностями или сочетаниями таких поверхностей. Объединение, пересечение или отсечение элементарных объемов образует одну монолитную деталь конструкции.  [c.62]

К деталям, надежность которых поддается аналитической оценке, относят детали, надел<ность которых зависит от усталости конструкционных элементов или от их износа при относительно простой зависимости между нагрузкой и прочностью. Эти характеристики определяются конструкцией и нормально могут быть проконтролированы путем проверки геометрии устройства и технологии изготовления эти факторы сами по себе служат достаточной гарантией однородности. В результате проведения специального испытания на надежность можно получить показатель, приближающийся к единице однако для обеспечения статистически значимых данных такое испытание может оказаться весьма дорогостоящим и требующим слишком больших затрат времени, хотя в общем случае вспомогательные средства для испытаний таких простых элементов являются относительно недорогими.  [c.226]


Чертежное изображение технических объектов начинается с их геометрии. В существующих на сегодняшний день системах САПР преобладает работа с двухмерными плоскими объектами. Чтобы определить двухмерную геометрию, конструктору предлагаются графические примитивы точки, прямые, дуги окружности, круги, круговые сегменты, эллипсы, гиперболы, параболы, треугольники, многоугольники и т. д. Как было описано выше, эти элементы вводятся с помощью светового пера или посредством накалывания чертежа. Обычно в каждой системе САПР имеется свой набор дополнительных графических примитивов, хранящихся как символы или макрокоманды в библиотеке деталей, вызываемых на экран по мере надобности. На рис. 31 представлен пример такого набора.  [c.134]

При расчете полей температур, напряжений и деформаций, а также полей повреждений и электрического потенциала в роторах и корпусных элементах турбин необходимо учитывать факторы, характеризующие особенности работы, геометрии, накопления и развития повреждений в этих деталях.  [c.20]

Химическое осаждение из паровой фазы ( VD). При химическом осаждении из паровой фазы происходит введение в камеру с образцами паров заданного состава, создаваемых на независимой стадии процесса, и их взаимодействие с поверхностью деталей. Основное преимущество метода по сравнению с твердофазным диффузионным насыщением из засыпок заключается в том, что он позволяет наносить покрытия на поверхности внутренних каналов змеевиков охлаждения аэродинамических элементов с пленочным охлаждением. Пары могут прогоняться насосами через внутренние каналы, обеспечивая получение однородных покрытий хорошего качества даже при очень сложной геометрии этих каналов. (При диффузионном насыщении из засыпок небольшое количество паров, из которых происходит осаждение материала покрытия, также может проникать во внутренние каналы через охлаждающие отверстия, однако "рассеивающая способность" метода очень ограничена). Другим преимуществом метода химического осаждения из паровой фазы является гибкость его управления, позволяющая формировать паровую фазу нужного состава. Это обусловлено тем, что термодинамика формирования  [c.93]

В машиностроении большинство деталей получает окончательные формы и габаритные размеры в результате механической обработки заготовки резанием, которое осуществляется путем последовательного удаления режущим инструментом с поверхности заготовки тонких слоев материала в виде стружки. Схема работы резца, его элементы и геометрия, а также режимы резания при точении и других видах токарной обработки приведены в гл. 2.  [c.141]

Многие детали подвергаются в эксплуатации воздействию сил трения. Это валы, оси и шпиндели, у которых шейки работают в паре с подшипниками скольжения или контактируют непосредственно с роликами в случае монтажа на роликоподшипниках без внутреннего кольца поршневые пальцы пальцы прицепных шатунов шаровые пальцы элементы цилиндрических и конических сопряжений листовые рессоры и другие детали. Зубья колес и рельсы работают при циклических напряжениях изгиба и трения качения со скольжением. Поскольку усталостное разрушение деталей начинается с поверхности или с приповерхностного слоя, то изменение геометрии, химического состава, структуры, системы собственных напряжений в поверхностях трения по сравнению с исходным состоянием не может не сказаться на сопротивлении  [c.253]

Расчетные методы анализа ползучести элементов машин применяются в настоящее время в основном для деталей достаточно простой конфигурации. Определение характеристик ползучести для конструкций сложной формы, как правило, сопряжено со схематизацией геометрии и с использованием упрощающих допущений, снижающих степень достоверности расчета. В то же время проведение испытаний крупногабаритных изделий на длительную прочность при высоких температурах связано с созданием специальных экспериментальных установок и требует больших материальных затрат. Зачастую такие испытания практически неосуществимы, ввиду чрезвычайно большой длительности процессов ползучести в реальной эксплуатации.  [c.237]

В системе КИПР-ЕС для осесимметричных конструкций выбрана модель, описывающая продольное сечение конструкции средствами двумерной геометрии. Конструкцию можно представить в виде совокупности деталей, каждая из которых определяется контуром сечения и материалом. Считают, что контур детали односвязный и образован такими геометрическими элементами, как отрезки прямых, дуги окружностей и эллипсов.  [c.306]

При применении табличного метода ввода ГИ пользователь не пишет программу, а лишь заполняет таблицу по определенному правилу и трафарету. Табличный метод реализуется табличным интерпретатором, который не имеет таких возможностей геометрического моделирования, как ППП ГРАФИТ. Он обычно ориентирован на определенный, часто используемый класс деталей и благодаря этому достаточно прост и удобен. В частности, табличный интерпретатор для ввода деталей, геометрию которых можно описать с помощью комбинаций, базирующихся на использовании двух геометрических элементов — отрезка прямой и дуги окружности, имеет следующую структуру входной информации ТИП, ХН, YH, Р/УГОЛ, ХЦ, Ц, где ТИП — тип элемента (принято 2 — отрезок прямой 3 — дуга, секущая предыдущий и последующий элементы контура детали 4 — дуга, секущая предыдущий элемент и касательная к последующему 5 — дуга,  [c.312]

В пакетном режиме задание шпангоутов и оболочек выполняется программным методом по схеме, аналогичной схеме формирования координатных моделей деталей конструкции описывается геометрия расчетных фрагментов формируются координатные модели создаются каталоги шпангоутов и оболочек координатные модели и каталоги заносятся в архив. Описание геометрии расчетных фрагментов проводится на контуре продольного сечения конструкции. Для каждой детали задаются характерные точки, определяющие границы шпангоутов и оболочек. Далее из этих точек проводятся секущие прямые, выделяющие расчетные фрагменты. Указанные операции выполняются для каждого слоя оболочки в отдельности, т. е. оболочки конструкции формируются послойно. Геометрия расчетного фрагмента задается описанием элементов его контура. Все рассмотренные построения выполняются на геометрической модели конструкции с использованием средств ППП ГРАФИТ. Таким образом, пользователь освобождается от сложных геометрических расчетов. Способ разбиения конструкции на расчетные фрагменты всегда можно модифицировать для внесения необходимых изменений в P .  [c.326]


При изготовлении чертежей деталей и узлов приходится часто строить линии пересечения поверхностей (линии перехода). Наиболее важную роль играют линии перехода при построении разверток элементов конструкций, выполняемых из листового металла (речь о них будет идти несколько позже). Для решения таких задач необходимо знать некоторые положения начертательной геометрии.  [c.79]

Рис. 5. Схема описания геометрии детали а — деталь 6 — деталь, расчлененная на элементы Р — плоскость Z — цилиндр К — конус Рис. 5. Схема описания геометрии детали а — деталь 6 — деталь, расчлененная на элементы Р — плоскость Z — цилиндр К — конус
Станочная система представляет собой четырехуровневую иерархическую систему станочная система, агрегат, узел, деталь (рис. 3). Станочная система является элементом старшего уровня, детали станка составляют элементы младшего уровня. Основной характеристикой деталей является их геометрия, выходным параметром узла служит движение, агрегат характеризуется выполнением определенной операции, а станочная система обеспечивает реализацию некоторого технологического процесса.  [c.18]

В процессе автоматизированного конструирования фигурируют геометрические объекты, которые являются исходными данными, промежуточными и окончательными результатами конструирования. Детали и узлы конструкции имеют самые разнообразные геометрические характеристики. Например, поверхность детали характеризуется микрогеометрией (шероховатостью поверхности, отклонениями формы, размеров) и макрогеометрией (параметрами, определяющими форму и положение в пространстве). Через геометрические характеристики детали вычисляются исходные параметры для функциональных моделей масса, центр масс, моменты инерции, жесткость и демпфирование. Геометрические параметры определяют конструктивные элементы детали (шпоночный паз, канавка, лыска, фаска, взаимное расположение деталей и т, д.). Кроме того, параметры геометрии связаны с технологическими характеристиками, необходимыми для изготовления детали и сборки узла (материалом детали, параметрами режимов термообработки поверхностей, условиями сборки и т. д.).  [c.259]

Элементы деталей имеют размеры и геометрические характеристики (форма, ориентация, расположение) поверхностей. Функция деталей требует ограничения размеров и геометрии элементов, т.е. установления определенных пределов (допусков), превышение которых может привести к нарушению этой функции.  [c.625]

Задаче о напряженном состоянии резьбовых соединений посвящен ряд расчетных исследований [1—4]. Однако сложная форма контура резьбы, наличие большого числа мест контакта, сложная геометрия сопрягаемых деталей и влияние на напряжения в резьбе работы деталей как элементов корпусов вызывает в общем случае непреодолимые в настоящий момент трудности при решении рассматриваемой задачи расчетными методами. Поэтому все известные работы в этой области рассматривают лишь частные случаи, характеризующиеся простой формой сопрягаемых деталей и действием осевых нагрузок. Кроме того, все указанные расчеты основаны на упрощающих допущениях, что не Позволяет учесть все существенные особенности работы резьбовых соединений. Поэтому требуется экспериментальное решение этой задачи на объемных моделях и на натурных соединениях.  [c.83]

В последние годы при расчетах на прочность элементов авиа-циояных конструкций, работающих в сложных условиях силовых и температурных воздействий, все чаще используются численные методы теории упругости, пластичности и ползучести, реализуемые с помощью ЭВМ. Это открывает широкие возможности для более полного описания геометрии деталей, реальных свойств материала, характера их нагружения и условий разрушения.  [c.3]

Область Referen e geometry (Справочная геометрия) используется для генерации элементов геометрии, которые использовались при создании деталей. Вы можете генерировать оси, кривые, плоскости, поверхности и т. д., установив соответствующий флажок.  [c.723]

Язык ГЕОМЕТР служит для описания геометрической информации, которая является исходной к процедурам, написанным также на языке АЛГОЛ-60. Любой ГО рассматривается в языке ГЕОМЕТР как составной из стандартных, типовых, элементарных и производных геометрических объектов. К стандартным ГО относятся конструктивные элементы, форма и размеры которых регламентируются ГОСТами, стандартами или нормалями (шпоночный паз, шлицевое соединение, резьба и т. д.). Типовыми геометрическими объектами являются сочетания поверхности и стандартных элементов в рассматриваемом классе деталей, например плоскости. Класс элементарных ГО составляют точка, прямая, окружность, плоскость, цилиндр. Производные ГО получаются как алгебрологические модели, включающие перечисленные ранее ГО. Входная информация описывает пространственный образ детали, а проекции,разрезы и сечения, указанные на чертеже детали, не используются.  [c.165]

Предположим, что требуется найти излучательную способность изотермической полости, показанной на рис. 7.5. Величина, которую необходимо вычислить, представляет собой отношение спектральной яркости элемента стенки А5, визируемого в Р, к спектральной яркости черного тела при той же температуре. В свою очередь поток излучения, исходящий из в направлении апертуры а, состоит из двух частей потока, излученного самим элементом А5, и лучистого потока, отраженного тем же элементом А5. Первый зависит только от коэффициента излучения стенки и ее температуры и не зависит от присутствия остальной части полости. Отраженный поток, со своей стороны, зависит от коэффициента отражения поверхности элемента А5 и от лучистого потока, попадающего на А5 из остальной части полости. На значении отраженного потока сказывается влияние а, так как лучистый поток, который в замкнутой полости пришел бы от а в направлении А5, в рассматриваемом случае отсутствует. Именно этот эффект отсутствия падающего потока от а в потоке излучения, отраженного от А5, и необходимо вычислить. Следует также учесть, что отсутствует не только лучистый поток в направлении а- А5, но и лучистый поток от а в направлении остальной части стенок полости. Таким образом, лучистый поток, поступающий в А5 от всей оставщейся части полости, является несколько обедненным. Из всего этого должно быть ясно, что расчет излучательной способности такой полости никоим образом не является тривиальной операцией. Для строгого вычисления необходимо знать в деталях геометрию полости и системы наблюдения, угловые зависимости излучательной и отражательной характеристик материала стенки полости, а также распределение температуры вдоль стенок полости. Температурная неоднородность изменяет поток излучения полости в целом так же, как и наличие апертуры, но с некоторым дополнительным усложнением, которое состоит в том, что изменение потока  [c.327]

Оценка влшшия геометрии и режима нагружения на термическую напряженность в максимально нагруженных зонах оболочечных корпусов. Рассмотрим применение МКЭ для анализа НДС тонкостенных оболочечных деталей (цилиндрических и сферических корпусов) в виде, допускающем полуавтоматическое разбиение рассматриваемой области на четырехугольные элементы [ 22, 23, 33 ].  [c.189]


Полная информация о геометрии машиностроительной детали включает информацию о всех элементах детали, об их взаимном расположении, а также информацию теоретико-ыно-жественного характера. Информация о каждом элементе детали слагается из качественной (указание типа — прямая, цилиндр, центровое отверстие и т. д.) и количественной (метрической) информации, характеризующей элементы и их взаимное расположение (диаметр цилиндра, диаметр центрового отверстия, ширина смазочной канавки и т. д. для точки, прямой, плоскости количественная информация отсутствует). Так, например, при описании плоских деталей в выражениях R6 и 0 170 символы R и 0 характеризуют тип составляющего элемента—окружности, затем указывается количественная характеристика этих элементов 6 и 170. При описании стандартных и типовых элементов характеристика элемента заключается в круглые скобки. Например, выражение  [c.121]

Геометрия рабочих элементов по фиг. 24, е рекомендуется главным образом для полирования сферических и плоских блоков диаметром менее 250 мм с обычным расположением деталей. Для изготовления шлифовальников всех размеров и болыннх полировальников реко мендуется шашечная геометрия рабочих элементов по фиг. 24, е.  [c.752]

Жаропрочные металлокерамические материалы, а также различные огнеупорные материалы, предназначенные для работы в качестве элементов современных машин, как известно, изготавливаются часто сразу в виде готовых деталей, требующих небольшой последуюш ей механической обработки. Такие материалы обладают большой неоднородностью физических свойств как по объему, так и в различных образцах одной партии и тем более в разных партиях. Свойства материалов вследствие особенностей их изготовления могут изменяться в зависимости от их геометрии и размеров. При поисковых исследованиях по созданию материалов принципиально новых классов, предназначенных для работы в условиях высоких скоростей газового потока и температур, часто необходимо дать оценку теплофизических характеристик конкретной детали или упрощенных образцов с подобной технологией изготовления. Иногда необходи.мо дать эту оценку при испытаниях деталей непосредственно на испытательных стендах, где изучаются одновременно такие свойства, как эрозия, окисляемость, устойчивость к термическим напряжениям и т. д.  [c.70]

Мастер не может автоматически создавать сетку на произвольном твердом теле. В некоторых случаях геометрия, которую достаточно сложно импортировать, может иметь нерегулярности, с которыми автоматическая процедура не всегда справляется. Если после импорта геометрии вы не увидите информации о количестве узлов и элементов в левом нижнем углу главного окна, это означает, что данная деталь не может быть автоматически разбита сеткой конечных элементов. В данном случае нужно выйти из Мастера и получить сетку, используя средства меню Mesh. После того как сетка будет получена, можно вернуться к решению задачи в Мастере.  [c.354]

Особенности технологических процессов термической обработки, связанные с применением печей, печей-ванн, установок ТВЧ и ТПЧ и заключающиеся в отсутствии контакта между нагреваемой деталью и нагревательными элементами, создают ряд технологических и организационных преимуществ гфи выполнении процессов термической обработки. В общем виде обработка в условиях объемного бесконтактного воздействия нагревающей (охлаждающей) среды характеризуется возможностью одновременной обработки значительного числа как одноименных, так и разноименных деталей, удобством применения различных приспособлений, простотой ориентации и перемещения деталей в рабочем пространстве, некоторой независимостью конструкции нагревательных элементов оборудования от геометрии и размеров обрабатываемых деталей (достаточно выдерживать только общую ориентацию без строгой фиксации деталей на приспособлениях или ноду печей).  [c.108]

По мере того, как расширяется опыт обработки резанием и углубляется научное осмысление этого опыта, становится все более ясным, что не имеют реального смысла понятия ОМР, режущие свойства ИРМ, технологические свойства СОЖ, если трактовать их только как свойства, присущие собственно обрабатываемому материалу, или собственно ИРМ, или собственно СОЖ- Всегда в равной мере решающими оказываются как свойства материалов -заготовки и инструмента, а также среда в отдельности, так и процессы, происходящие при их взаимодействии в условиях, складывающихся при выполнении той или иной технологической операции. Поэтому оценка режущих свойств материала инструмента или основных эксплуатационных (технологических) свойств СОЖ, сделанная при выполнении определенной групцы операций по изготовлению деталей из определенной группы обрабатываемых материалов существенно изменится при других условиях. Оценка ОМР также сильно изменяется при изменении оперции обработки, материала инструмента и СОЖ. Сложность же вопроса в том именно и состоит, что, определяя показатели 0/vtP при неизменных ИРМ, СОЖ, геометрических и кинематических факторах, мы, по существу, еще ничего не определяем, так как путем изменения ИРМ, СОЖ, геометрии инструмента и т. п. есть возможность очень существенно изменить показатели ОМР, причем в различной степени для разных комбинаций элементов режима резания. Поэтому определению действительного значения ОМР должно предшествовать определение оптимального сочетания факторов, обусловливающих ОМР, причем не только для каждого металла, но и для каждой операции обработки данной детали это сочетание будет особенным.  [c.4]


Смотреть страницы где упоминается термин Элементы геометрии деталей : [c.383]    [c.417]    [c.354]    [c.444]    [c.6]    [c.42]    [c.254]    [c.60]    [c.398]    [c.89]    [c.300]    [c.85]   
Смотреть главы в:

Машиностроительное черчение  -> Элементы геометрии деталей



ПОИСК



Аналитическое описание и элементы локальной геометрии номинальный поверхностей деталей и инструментов

Геометрия

Деталь 8, 9 — Элементы

Дискретное задание и элементы локальной геометрии сложных поверхностей деталей и инструментов

Задание рабочих поверхностей деталей и инструментов. Расчет элементов их локальной геометрии



© 2025 Mash-xxl.info Реклама на сайте