Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластичность высокая при комнатной температур

Технологические данные сплава МА8. Температура литья слитков 730—750°С. Пластичность б интервале температур горячей обработки высокая, при комнатной температуре удовлетворительная.  [c.132]

Поведение различных латуней при горячей обработке своеобразно. Пластичные ири комнатной температуре а-латуни оказываются в интервале 500— 700 С менее пластичными, чем Р-латуни Хотя прочность а-латуни при комнатной температуре ниже, чем р-латуни при температурах выше 500°С fi-латуни оказываются менее прочными и более пластичными. По этой причине для прокатки в горячем состоянии наиболее пригодны латуни с таким содержанием циика (более 32—39%), чтобы при высокой температуре структура состояла бы из a-f р- или р-кристаллов (см. рис. 441). Наоборот, для производства тонких листов и проволоки (т. е. для деформации в холодном состоянии) целесообразно применение латунной, обладающих максимальной пластичностью при комнатной температуре (т. е. однофазные а-латуни с содержанием цинка около 30%).  [c.608]


Таким образом, практика подтверждает результаты исследований, что хрупкость и пластичность не есть неизменные свойства материалов, а являются лишь состояниями, в которых материалы могут находиться. Под влиянием различных факторов материалы могут переходить из хрупкого состояния в пластичное и наоборот. Например, высокоуглеродистые инструментальные стали, хрупкие при комнатной температуре, становятся пластичными при высоких температурах и поддаются горячей пластической обработке то же самое можно сказать и о ковких чугунах. Инструментальные стали, хрупкие при растяжении или изгибе, ведут себя как пластичные при деформации кручением и т.д.  [c.113]

Металлические твердые тела в отличие от других типов твердых тел, обладают рядом интересных особенностей. К этим особенностям следует отнести высокую электропроводность, металлический блеск, связанный с большими коэффициентами отражения электромагнитных волн, высокую пластичность (ковкость) и др. Удельная электропроводность металлов при комнатных температурах составляет 10 —10 Ом -м-, тогда как типичные неметаллы, например кварц, проводят электрический ток примерно в 10 раз хул е типичного металла серебра. Для металлов характерно возрастание электропроводности с понижением температуры. Из 103 элементов таблицы Менделеева 19 не являются металлами.  [c.82]

В отличие от вольфрама рений имеет хорошую пластичность при комнатной температуре и, что особенно ценно, в противоположность вольфраму и молибдену он сохраняет высокую пластичность в рекристаллизованном состоянии.  [c.97]

В однофазных о. ц. к. и г. ц. к. поликристаллах скольжение в смежном кристаллите происходит относительно легко, так как из-за большого числа систем скольжения в соседних кристаллитах всегда найдется благоприятная ориентировка для скольжения. Барьерное упрочнение в таких металлах не будет эффективным вплоть до высоких напряжений. В указанном случае различие в упрочнении и пластичности моно- и поликристаллов будет не столь резким. Барьерное упрочнение важно для металлов с гексагональной решеткой, деформируемых при комнатной температуре. В этих условиях есть только одна плоскость легкого скольжения, и лишь немногие зерна ориентированы благоприятно по отношению к приложенному напряжению. Поэтому гексагональные монокристаллы, ориентированные для базисного скольжения, медленно наклепываются вплоть до значительных деформаций, а поликристаллические образцы (рис. 137) упрочняются гораздо быстрее. Пластичность поликристалла значительно меньше пластичности монокристалла. С повышением температуры возможно скольжение в плоскостях, кроме базисной (см. гл. III и IV), при этом поликристаллические образцы проявляют большую пластичность и меньшую склонность к наклепу.  [c.226]


Вследствие интенсивной теплоотдачи в атмосферу и теплопередачи в стенки ручья штампа происходит быстрое охлаждение заготовки, что приводит к наклепу и охрупчиванию ее металла. Во избежание образования трещин это требует дополнительных промежуточных нагревов цветных заготовок. При штамповке латуни следует иметь в виду, что при температуре выше 680 °С из нее интенсивно возгоняется цинк в виде порошка ZnO. Это влечет изменение ее химического состава и прочностных характеристик. Следует также учитывать, что при горячей штамповке латуни более хрупкая при комнатной температуре Р-фаза оказывается пластичнее а-фа-зы. Поэтому для горячей штамповки однофазных латуней следует выбирать марки с предельным для а-латуней содержанием цинка — до 39 %. После нагрева в результате а -превращения их структура состоит из а -Ь Р- или только Р-зерен и имеет более высокую пластичность, чем у латуней с меньшим содержанием цинка, не претерпевающих а -> Р-превращений.  [c.65]

Прокатка клиновидных, образцов латуни Л68 с примесью 0,06— 0,08 % РЬ и добавками до 0,05 % (по шихте) лития улучшает пластичность латуни при комнатной и высокой температурах.  [c.180]

Как известно, силициды металлов при комнатной температуре хрупкие и получение пластичных силицидов титана открывает принципиальную возможность улучшения механических свойств таких материалов. Эксперименты показывают, что сравнительно высокую пластичность имеют силициды, полученные в условиях, когда реализуются возможности для их аномально большой скорости образования.  [c.41]

Свойства бериллия также исследовались для определения возможностей его использования в качестве волокнистого армирующего материала для композитов с полимерной матрицей, если он сам имелся в достаточном количестве в форме пластичной проволоки. Высокий модуль (на 40% больше, чем у стали) и низкая плотность (на 30% меньше, чем у алюминия) сделали его привлекательным конструкционным материалом для авиации, и можно было надеяться, что пластичность проволок улучшит ударные свойства композита. В работе [62] опубликованы некоторые результаты по растяжению бериллиевой проволоки диаметром 0,005 дюйм. Она разрушалась вязко даже при комнатной температуре после удлинения примерно на 1—3%. Позднее [36] исследован более детально предел упругости проволоки и определено ее остаточное удлинение при различных уровнях нагружения. Кроме того, исследованы также свойства длительной прочности проволоки при комнатной температуре. Данные показывают уменьшение прочности с ростом продолжительности действия нагрузки, однако результаты имеют большой разброс.  [c.278]

Следует отметить, что Си после РКУ-прессования может показывать и относительно низкую пластичность при растяжении (10%) [326]. По-видимому, это связано с высокой долей малоугловых границ зерен присутствующих в образцах после определенных режимов РКУ-прессования. В работе [61] испытывали Си со средним размером зерен 210 нм при сжатии. Испытание проводилось при комнатной температуре с начальной скоростью деформации 1,4 X 10 с Ч Было также обнаружено, что деформационные кривые для Си с различным размером зерен различаются по форме. Типичными особенностями кривой деформации сжатием в случае наноструктурной Си являются высокое напряжение течения, равное 390 МПа, значительное начальное деформационное упрочнение в узком интервале степеней деформации (примерно 5%) на начальной стадии деформации, практически полное отсутствие деформационного упрочнения на последующей стадии деформации. Напряжение течения на второй стадии составило около 500 МПа. В то же время пластичность наноструктурной Си была высока. Образцы при сжатии не разрушались даже после максимальной деформации, которая в данном эксперименте равнялось 83%.  [c.185]

Приведенные данные свидетельствуют о высокой конструктивной прочности биметалла сталь -молибден. Если молибден при комнатной температуре абсолютно хрупок (ударная вязкость 0), то ударная вязкость биметалла сталь—молибден достаточно высока (8—10 кгс м/см ). Возможность получения биметалла сталь—молибден с хорошими механическими свойствами и сопротивлением разрушению обеспечивает и возможность использования молибдена в качестве конструкционного материала в химическом машиностроении, так как при этом устраняются основные недостатки молибдена - низкие пластичность и вязкость.  [c.104]


В противоположность сплавам, легированным медью и магнием, все сплавы, содержащие в основном кремний и относительно небольшие количества других легирующих элементов (сплавы серии 300), обладают довольно постоянным и во многих случаях относительно высоким уровнем пластичности в надрезе во всем интервале температур, причем независимо от состояния материала. Некоторые из этих сплавов и состояний не имеют очень высокой пластичности в надрезе, но сохраняют значения отношений 0"/Ов и а" сто,2 во всем исследованном температурном интервале на уровне значений при комнатной температуре. Все испытанные сплавы этой серии, отлитые в кокиль, а также изготовленные по усовершенствованной технологии, были легированы главным образом кремнием, и у них чувствительность к надрезу при всех температурах сохраняется постоянной на уровне, соответствующем комнатной температуре.  [c.200]

У большинства металлов при комнатных и более низких температурах за достижимое в опыте время наблюдения заметить ползучесть не удается. В этих условиях их поведение с достаточной точностью описывается моделью упруго-пластического тела. При более высоких (сходственных) температурах ползучесть может проявиться весьма заметно. Например, у малоуглеродистой стали временные эффекты становятся существенными при температурах выше 400 °С. При таких температурах зависимость между напряжениями и деформациями существенно меняется с изменением скорости деформирования (нагружения), так что кривая а — е без указания условий эксперимента утрачивает смысл. Важно заметить, что ползучесть металлов при высоких температурах наблюдается при любых, даже весьма небольших напряжениях, что отличает это явление от холодной пластичности, которая проявляется только по достижении определенного уровня напряжений. Ползучесть других, неметаллических материалов (цементный камень, бетон, дерево, пластмассы) можно обнаружить уже при комнатной температуре.  [c.752]

Сплавы с преобладанием Р-структуры благодаря кубической решетке очень пластичны при комнатной температуре, мало уступая в этом отношении техническому титану. Например, в отличие от других титановых сплавов Р-сплавы могут подвергаться поперечной прокатке (способ получения тонкостенных труб большого диаметра) при комнатной температуре. Другим преимуществом этих сплавов является возможность достижения чрезвычайно высокого уровня  [c.183]

Хромоникельмолибденовые стали при комнатных температурах имеют те же механические свойства, что аустенитные типа 18-8 (см. рис, 1), а при высоких — повышенную жаропрочность. Длительный нагрев (до 9 тыс, ч) при 650 и 750° С не вызывает больших изменений механических свойств. Эти стали сочетают достаточно высокую длительную прочность с высокой пластичностью [22],  [c.149]

Литейные свойства невысокие, сплав сохраняет хорошую пластичность в течение двух недель после отливки, что позволяет производить холодную деформацию, отливок без трещин. Окончательные механические свойства сплав приобретает после длительного (30—40 дней) вылеживания при комнатной температуре или после искусственного старения. Обрабатываемость резанием хорошая, коррозионная стойкость высокая.  [c.157]

Никель с очень многими металлами образует двойные и тройные твёрдые растворы на всём протяжении или в значительной области концентраций. Эти растворы дают сплавы с весьма ценными механическими и физическими свойствами, а и.менно жароустойчивостью, коррозионной устойчивостью, большим удельным электросопротивлением, малым температурным коэфициентом электросопротивления, большой термоэлектродвижущей силой и др. Эти свойства позволяют применять и.чке-левые сплавы для изготовления антикоррозионных изделий и оборудования, реостатов, электронагревательных приборов и печей с высокой рабочей температурой, точных измерительных приборов, термопар с большой электродвижущей силой и жаростойкостью и т. п. Сплавы Си и N1 образуют непрерывный ряд твёрдых растворов (фиг. 207). Сплавы, содержащие до 68,5% N1. при комнатной температуре немагнитны. Сплавы, содержащие 40—500/о N1, обладают наибольшим удельным электросопротивлением и термоэлектродвижущей силой п наименьшим температурным коэфициентом электросопротивления (фиг. 208). Сплавы меди и никеля обладают хорошей пластичностью.  [c.223]

Образцы поликристалличе-ского молибдена, закаленные при 2100—2200° С, обладали исключительно высокой -пластичностью при комнатной температуре. Относительное сужение при испытаниях на растяжение составляло 95%. Повторный нагрев образцов до 850° С не уменьшал их пластичность. Однако нагрев в интервале температур 900—1700°С приводил, с одной стороны, к резкому падению пластичности, а с другой стороны, по данным металлографического анализа к измерениям внутреннего трения, к распаду твердого раствора примесей внедрения.  [c.41]

Недавно был предложен метод получения мелких гранул из химически активных металлов, в том числе и титана [7], позволяющий получат], композигпые смеси любого состава, используя методы порошковой металлургии. Можно, напрпмер, взять высоколегированный жаропрочный титановый сплав (20% Nb, 8% А ), пластичность которого при комнатной температуре недостаточна, и сплав (6% А1, 4%V), имеющий хорошую пластичность, но сравнительно невысокую жаропрочность, и в виде гранул смеша1Ь оба сплава в желаемой пропорции. Затем, не доводя эту смесь до снлавления, превратить се в компактный кусок металла прессованием при повышенных температурах. Такой сплав будет иметь более высокую жаропрочность, чем его пластичный компонент, и большую пластичность, чем его жаропрочный компонент другими словами, его свойства будут определяться соотношением сплавов - компоиеитов.  [c.19]

Наиболее опасной примесью в никеле является сера. Ее растворимость при комнатной температуре равна всего 0,005%. При более высоком содержании серы на границах зерен выделяется сульфид NiijSa. Он образует с никелем эвтектику, плавящуюся при 645 " С и вызывающую нри сварке и горячей деформации образование трещин по границам зерен. Наличие сульфида NijSa снижает также пластичность сплавов при комнатной температуре.  [c.95]


Полиизобутилены сохраняют эластичность до —55°. При нагревании до 100° и выже механические свойства снижаются, а пластичность возрастает. При комнатной температуре первоначальная прочность и пластичность восстанавливаются. При 180—200° полиизобутилены можно формовать. Распадаются они с образованием маслянистых и газообразных продуктов при 350— 400°. К действию озона полиизобутилены весьма стойки. К воде они совершенно устойчивы до температуры кипения. Подобно натуральному каучуку они горят коптящим пламенем. Окраска и механические свойства не изменяются в результате действия рассеянного света. Под действием прямых солнечных лучей распадаются прочность и эластичность понижаются появляется липкость. Ультрафиолетовые лучи вызывают аналогичные явления. Светостойкость может повышаться за счет создания защитного слоя лака, а также добавок окрашенных наполнителей. Добавка 1% активной сажи приводит к стабильности механических свойств полиизобутиленов под кварцевой лампой в течение суток. Длительная нагрузка даже при комнатной температуре вызывает холодную текучесть - необратимую деформацию полиизобутилена. Добавлением каучука можно существенно снизить холодную текучесть. Электроизоляционные свойства мало зависят от влажности среды и колебаний температур. Характерна высокая химическая стойкость к кислотам и щелочам. Полиизобутилен стоек в течение пяти недель к действию царской водки, концентрированной азотной кислоты и водных растворов галоидов. При тешературе выше 80° полиизобутилены обугливаются в концентрированной серной кислоте и разрушаются в концентрированной азотной кислоте.  [c.275]

Пластичность в горячем состояний высокая, при комнатной температуре — пониженная. Штампуется в интервале температур 300—350 °С. Термической обработкой не упрочняется. Сваривается хорошо газовой, аргонно-дуговой и точечной сваркой. Обрабатываемость резанием хорошая Пластичность в горячем состоянии высокая. Штамповка в интервале температур сплав МА8М — 280—350 "С и сплав МА8Н 230—350 °С. Термической обрабочкой не упрочняется. Сваривается хорошо газовой, аргонно-дуговой и точечной сваркой. Обрабатываемость резанием хо шая Обладает хорошими литейными и высокими механическими свойствами. Рекомендуется для литья в несчаяую ферму, кокиль и под давлением. Свариваемость удовлетворительная. Обрабатываемость резанием хорошая  [c.187]

Из высокопрочных сплавав магаия с алюминием и цинком сплав Млб имеет самое высокое временное сопротивление. Пластичность сплава при комнатной температуре низкая. Сплав Млб, так же как и сплав Мл5, обладает хорошими литейными свойствами и применяется для получения сложных крупногабаритных отливок.  [c.382]

При нагреве до 80—100° С молибден растворяется в серной н соляной кислотах. Азотная кислота и царская водка действуют на молибден при комнатной температуре медленно, а при высокой температуре — быстро. Для повышения жаропрочности молибдена его легируют небольшими количествами титана, циркония и ниобия. Лучшими свойствами при высок ой температуре обладают сплав молибдена с 0,5% Т1. Предел прочности литого деформированного молибдена с 0,5% Т1. Предел прочносчи литого деформированного молибдена составляет при комнатной температуре 470—700 Мн/дг , а при 870° С 170—360 Лiп/л . Для сплава молибдена с 0,45% Т1 предел прочности при тех же температурах соответстве[[по составляет 520—930 и 280—610 Мн/м пластичность сплава высокая.  [c.293]

МПа). Высокая твердость определяет их великолепную износостойкость. Правда пластичность аморфных металлов низка, но выше, чем у обычного стекла. Их можно, например, прокатывать при комнатной температуре. Другое важнейшее преимущество - их исключительно высокая коррозионная стойкость. Во многих весьма агрессивных средах (морской воде, кислотах) они не корродируют вообще. Аморфные сплавы на основе ферромагнитных металлов (железа, никеля) также ферромагнитны, электросопротивление их гораздо выше, чем кристаллических (обычно в 2-3 раза). Получение аморфной стр5лпуры в принципе возможно для всех металлов. Наиболее легко аморфное состояние достигается в сплавах А1, РЬ, Зп, Сп и др. Для ползп1ения металлических стекол на базе N1, Со, Ре, Мп, Сг к ним добавляют неметаллы или полуметаллические элементы С, Р, 31, В, Аз, 3 и др.  [c.45]

Наблюдения за поведением би- и поликристаллов гексагональных металлов показали, что их деформационное упрочнение определяется в основном наличием скольжения по небазисным плоскостям. При 77 К поликрис-сталлы цинка разрушаются совершенно хрупко, поликристалл магния — после деформации е 0,03-=-0,05, а поликристалл кадмия —при 8 0,15- 0,20. Даже при комнатной температуре поликристаллы цинка и магния выдерживают малую пластическую деформацию, в то время как монокристаллы кадмия разрушаются при е 0,35. Это происходит потому, что небазисное скольжение в магнии очень ограниченно и встречается только в призматических плоскостях. Несмотря на развитие двойникования, облегчающего пластическую деформацию вследствие переориентации отдельных областей в положение, удобное для скольжения, из-за хаотичности ориентировки общая деформация и пластичность поликристалла остаются малыми. В кадмии наблюдается существенное небазисное скольжение по пирамидальной системе 1122 <1123> и комбинация базисного и пирамидального скольжений удовлетворяет требованию пяти независимых систем скольжения. В результате у поликристаллического кадмия появляется заметная пластическая деформация до разрушения, при этом более высокая, чем у магния и цинка пластичность.  [c.228]

Диморфный металл обладает рядом уникальных свойств из-за отсугсг-вйя границ зерен и дефектов кристаллического строения (например, дислокаций). Прочность их превосходит самые лучшие легированные стали (-3000 МПа), Высокая твердость определяет их великолепную износостойкость. Правда пластичность аморфных металлов низка, но выше, чем у обычного стекла. Их можно, например, прокатывать при комнатной температуре. Другое важнейшее преимущество - их исключительно высокая коррозионная стойкость. Во многих весьма агрессивных средах (морской воде, кислотах) они вообще не корродируют. Аморфные сгшавы на основе ферромагнитных металлов (железа, никеля) также ферромагнитны, электросопротивление их гораздо выше, чем кристаллических (обычно в 2...3 раза). Получение аморфной структуры в принципе возможно для всех металлов. Наиболее легко аморфное состояние достигается в сплавах А1, РЬ, 5п, и др. Для получения метяплических стекол на базе N1, Со, Ре, Мл, Сг к ним добавляют неметаллы или полуметаллические элементы С, Р, 5), В, Аз, 5 и др.  [c.17]

Монокристаллы бериллия, полученные зонной плавкой, пластичны при комнатной температуре после зонной очистки в атмосфере высоко-чистого аргона 6=140% [1], а после пятикратной зонной очистки ва-куумплавленпого бериллия 6 достигало 222 % (1].  [c.70]

Возможности удешевления самого коррозионностойкого из тугоплавких металлов Та за счет легирования или его полной замены ниобием, достаточно дорогим и дефицитным металлом, бьши рассмотрены в предыдущей главе. Возможно дополнительное легирование ниобия или сплава Nb—Та титаном, однако, к сожалению, для сохранения высокой коррозионной стойкости лишь в небольших количеств Данные, свидетельствующие о высокой коррозионной стойкости молиёйена, бьши приведены также в предьщущей главе. Однако низкая при комнатной температуре пластичность и плохая свариваемость (хрупкость сварного шва) создают определенные препятствия для его массового использования в химическом ма-  [c.91]


Характеристики сопротивления удару композиционных материалов на основе различных алюминиевых сплавов получены в результате испытаний при комнатной температуре образцов с размерами 55x10x10 мм и V-образным надрезом глубиной 2 мм при скорости нагружения 5 м/с (табл. 48). Поскольку механизм рассеяния ударной энергии связан главным образом с пластической деформацией алюминиевой матрицы как вблизи места разрушения, так и во всем объеме образца, более высоким сопротивлением удару обладает материал с самой пластичной матрицей — сплавом 1100. Приведенные в табл. 48 свойства получены на материале с волокнами диаметром 140—150 мкм. Применение волокон диаметром 200 мкм в сочетании с матрицей из алюминиевого сплава 1100 позволяет увеличить работу разрушения композиционного материала в 2—3 раза [220].  [c.209]

Be и Re, также считавшиеся хрупкими. Все эти металлы при высокой степени чистоты, достигаемой особой технологией, а именно зонной плавкой с электронно-лучевым или индукционным нагревом, обладают очень большой пластичностью при комнатной температуре образца в частности, образец можно медленно загнуть на 180°. Одновременно с устранением примесей стремятся создать условия для сравнительно легкого выращивания монокристаллов большого размера. В монокристалле металл обладает еще большей пластичностью. Для того чтобы знать, какую долю увеличения пластичности можно отнести за счет химической чистоты, а какую за счет монокристалличности, производили опыт с образцами из металла высокой чистоты, один из них был монокристаллическим, а другой путем механического воздействия был переведен из моно-кристаллического состояния в поликристаллическое. При этом пластичность второго образца, оставаясь все еще высокой, оказалась все же ниже, чем у первого.  [c.298]

Бериллий. Бериллий, используемый ныне как легирующая добавка <в сплавах меди, никеля, алюминия), обладая наименьшим из всех металлов сече-инем захвата тепловых нейтронов и достаточно высокими коррозионной стойкостью и жаропрочностью, имеет перспективу конструкционного материала ядерной энергетике. Обладая очень высокой удельной прочностью (выше, чем у титана) вплоть до 500 °С, бериллий найдет применение как конструкционный материал и в технике летательных аппаратов (в особенности ракет). Непреодолимым пока препятствием к использованию бериллия в качестве конструкционного материала является малая пластичность. Весьма характерной особенностью бериллия является анизотропность, возникающая как при литье и остывании, так и в результате механических деформаций. Интересно заметить, что при комнатной температуре и при 700 С материал в отношении каждой из характеристик, 6 и гр, практически изотропен. При промежуточных же температурах различие в величинах каждой из упомянутых характеристик для двух разных лаправлений, проходящих через точку тела, максимально и достигает 400 и 200% соответственно, т. е. материал существенно анизотропен. Механические харак теристики бериллия в значительной мере зависят от способа получения полуфабрикатов его. Так, например, Оп, (в продольном направлении) колеблется между 65 и 28 кПмм первое число относится к полуфабрикатам, получаемым тепловым выдавливанием при 400—500 °С, второе — к выдавленному слитку.  [c.327]

N1—20 Сг (содержащий 2 об. % дисперсоида УаОз, а также 2,2% и 1,1% А1 для получения у -фазы [294] см. рис. 43) был исследован в присутствии водорода. Этот сплав, названный Инконель МА 753 имеет предел текучести при комнатной температуре около 900 МПа и практически не испытывает потерь пластичности при экспозиции в водороде при высоком давлении или при наводороживании [259] (рис. 44).  [c.118]

В целом высокопрочные аустенитные нержавеющие стали обладают очень высокой стойкостью в морских атмосферах. Высокая прочность этих сплавов достигается путем холодной деформации, после чего обычно следует термообработка, частично восстанавливающая пластичность. После холодной деформации и термообработки аустенитные нержавеющие стали обладают очень хорошей стойкостью в агрессивных морских атмосферах. Однако в местах сварных соединений стойкость теряется. Наблюдается также коррозия этих сталей при высоких температурах, в частности при испытаниях в кипящем 42%-ном растворе Mg l2, а также в горячей морской воде [12]. О коррозии при комнатных температурах сообщалось очень редко. После термообработки на твердый раствор аустенитные нерл<авеющие стали не подверл<ены кор-  [c.66]

Достоинствами а-сплавов являются их отличная свариваемость плавлением, хорошая пластичность и высокая прочность при криогенных температурах (вплоть до температуры жидкого водорода), нечувствительность к упрочнягош,ей термической обработке и сравнительно высокое сопротивление ползучести. Недостатком а-сплавов (за исключением нелегированного титана) является низкая технологическая пластичность при комнатной температуре, что затрудняет прокатку тонких листов и требует подогрева материала и инструмента при листовой штамповке.  [c.183]

При комнатных температурах сплав обладает повышенной прочностью и высокой пластичностью, хорошо деформируется и штампуется в холодном состоянии, сваривается точечной, роликовой и атомподуговой сваркой.  [c.179]

При дальнейшем увеличений содержания хрома в сплаве (25—30%) легированность металлической основы хромом и углеродом повышается, что делает аустенит устойчивым при комнатной температуре. Таким образом, металлическая основа литых сплавов, содержащих 25- 30% Сг, в условиях ускоренного охлаждения в песчаных формах представляет собой у-фазу (метастабиль-ный аустенит). щеё увеличение содержания хрома в сплаве одновременно повышает легированность карбидной фазы. В связи с этим при содержании в чугунах более 2,3% Сг создаются условия для образования карбида (Gr, Fe)28Ge- Кубический карбид хрома Содержит меньшее количество углерода, чем тригональный карбид, и имеет более низкую микротвердость. Освободившаяся доля углерода в результате структурного изменения в карбидной фазе идет на образование новых карбидов. Поэтому доля карбидной составляющей в эвтектике спл ава, содержащего более 23% Gr, начинает увеличиваться С появлением кубического карбида (Gr, Fe)MGe, что вызывает охрупчивание эвтектики, т. е. ведет К.снижению прочности и пластичности сплава. Несмотря на общее увадичение доли карбидной фазы в чугунах с 25—30% Gr и рост количества карбидов в эвтектике сплава, относительная износо стойкость" его не повышается по сравнению с чугунами третьей группы. Это можно объяснить, очевидно, более низкой твердостью кубического карбида хрома и более высокой хрупкостью карбидной фазы, также обязанной появлению карбида (Gr, Fe)2aGe.  [c.33]

Из таблицы видно, что термообработка тоже приводит к некоторому снижению пластичности. По-видимому, снижение пластичности вызывается некоторым окислением ниобия в вакууме порядка 5-10" мм. рт. ст. Ниобий с покрытием во всех случаях имеет меньшую пластичность, чем ниобий без покрытия, но прошедший точно такую же термообработку. С целью выяснения влияния диффузии металла покрытия на свойства основного металла были проведены длительные отжиги при высоких температурах. Образцы, подвергнутые отжигу, испытывались на растяжение при комнатной температуре. Результаты приведены в табл. I. 42 и на рис. I. 36. Как видно из рис. I. 36, пятичасовой отжиг при 1600° С незначительно уменьшил пластичность как исходного ниобия, так и ниобия с покрытием, не изменив (по отношению к неотожженным образцам) характера зависимости пластичности от толщины покрытия. По-видимому, здесь еще не сказывается влияние диффузии. Совершенно иная зависимость  [c.103]

Таким образом, первостепенной задачей является нанесение рениевых покрытий на молибденовые сплавы, обладающие высокой пластичностью при комнатной температуре и сохраняющие ее на высоком уровне после высокотемпературной обработки.  [c.107]


Смотреть страницы где упоминается термин Пластичность высокая при комнатной температур : [c.206]    [c.453]    [c.119]    [c.15]    [c.218]    [c.63]    [c.340]    [c.268]    [c.191]    [c.154]    [c.144]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.298 ]



ПОИСК



Температура высокая



© 2025 Mash-xxl.info Реклама на сайте