Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Холодная пластичность

У большинства металлов при комнатных и более низких температурах за достижимое в опыте время наблюдения заметить ползучесть не удается. В этих условиях их поведение с достаточной точностью описывается моделью упруго-пластического тела. При более высоких (сходственных) температурах ползучесть может проявиться весьма заметно. Например, у малоуглеродистой стали временные эффекты становятся существенными при температурах выше 400 °С. При таких температурах зависимость между напряжениями и деформациями существенно меняется с изменением скорости деформирования (нагружения), так что кривая а — е без указания условий эксперимента утрачивает смысл. Важно заметить, что ползучесть металлов при высоких температурах наблюдается при любых, даже весьма небольших напряжениях, что отличает это явление от холодной пластичности, которая проявляется только по достижении определенного уровня напряжений. Ползучесть других, неметаллических материалов (цементный камень, бетон, дерево, пластмассы) можно обнаружить уже при комнатной температуре.  [c.752]


Холодная пластичная сварка Для холодной пластичной сварки  [c.218]

Общие замечания. Под пластичностью иногда понимают проста способность тела испытывать деформации, не полностью исчезающие с удалением вызвавших их причин. Пластичность в этом смысле — общее свойство твердых тел. Но чаще в этот термин вкладывают более узкий смысл, отождествляя пластичность с атермической ( холодной ) пластичностью, т. е. способностью к остаточным деформациям, не связанным с тепловой подвижностью вещества. Внешне это проявляется в известного рода независимости картины процесса от времени.  [c.79]

В работе [114] изучали превращение аустенита в мартенсит при охлаждении и при холодной пластичной деформации сталей, содержащих 0,07% С 14% Сг 3,8% N1 и 0,4 Т1 при переменном количестве марганца 8,6 9,8 11,9 13,8 и 15,8%.  [c.154]

Ползучесть металлов. Теории течения. Кроме атермической (холодной) пластичности, рассмотренной в предыдущих пунктах, для металлов характерной является и ползучесть, наблюдаемая для технических сталей при повышенной, а для некоторых металлов и сплавов при нормальной температуре. Она заключается в неограниченном нарастании деформаций под действием приложенной нагрузки.Этот про цесс обычно описывают кривыми ползучести, характерная идеализированная зависимость такого типа приведена на рис.10 для одномерно-  [c.100]

Радикальный способ упрочнения аустенитных сталей — холодный наклеп при деформации порядка 80—90% предел текучести достигает 100— 120 кгс/ /им , а предел прочности 120—140 кгс/мм при сохранении достаточ[ю высокой пластичности.  [c.494]

Поведение различных латуней при горячей обработке своеобразно. Пластичные ири комнатной температуре а-латуни оказываются в интервале 500— 700 С менее пластичными, чем Р-латуни Хотя прочность а-латуни при комнатной температуре ниже, чем р-латуни при температурах выше 500°С fi-латуни оказываются менее прочными и более пластичными. По этой причине для прокатки в горячем состоянии наиболее пригодны латуни с таким содержанием циика (более 32—39%), чтобы при высокой температуре структура состояла бы из a-f р- или р-кристаллов (см. рис. 441). Наоборот, для производства тонких листов и проволоки (т. е. для деформации в холодном состоянии) целесообразно применение латунной, обладающих максимальной пластичностью при комнатной температуре (т. е. однофазные а-латуни с содержанием цинка около 30%).  [c.608]

Холодная деформация характеризуется изменением формы зерен, которые вытягиваются в направлении наиболее интенсивного течения металла (рис. 3.2, а). При холодной деформации формоизменение сопровождается изменением механических и физико-химических свойств металла. Это явление называют упрочнением (наклепом). Изменение механических свойств состоит в том, что при холодной пластической деформации по мере ее увеличения возрастают характеристики прочности, в то время как характеристики пластичности снижаются. Металл становится более твердым, но менее пластичным. Упрочнение возникает вследствие поворота плоскостей скольжения, увеличения искажений кристаллической решетки в процессе холодного деформирования (накопления дислокаций у границ зерен).  [c.56]


При горячей деформации пластичность металла выше, чем при холодной деформации. Поэтому горячую деформацию целесообразно применять при обработке труднодеформируемых, малопластичных металлов и сплавов, а также заготовок из литого металла (слитков). В то же время при горячей деформации окисление заготовки более  [c.57]

Максимальную температуру нагрева, т. е. температуру начала горячей обработки давлением, следует назначать такой, чтобы не было пережога и перегрева. В процессе обработки нагретый металл обычно остывает, соприкасаясь с более холодным инструментом и окружающей средой. Заканчивать горячую обработку давлением следует также при вполне определенной температуре, ниже которой пластичность вследствие упрочнения (рекристаллизация не успевает произойти) падает и в изделии возможно образование трещин. Но при высоких температурах заканчивать деформирование нецелесообразно (особенно для сплавов, не имеющих фазовых превращений). В этом случае после деформирования зерна успевают вырасти и получается крупнозернистая структура, характеризующаяся низкими механическими свойствами.  [c.60]

В отливках в результате неравномерного затвердевания тонких и толстых частей и торможения усадки формой при охлаждении возникают внутренние напряжения. Эти напряжения тем выше, чем меньше податливость формы и стержней. Если величина внутренних напряжений превзойдет предел прочности литейного сплава в данном участке отливки, то в теле ее образуются горячие или холодные трещины. Если литейный сплав имеет достаточную прочность и пластичность и способен противостоять действию возникающих напряжений, искажается геометрическая форма отливки.  [c.126]

Холодные трещины возникают в области упругих деформаций, когда сплав полностью затвердел. Тонкие части отливки охлаждаются и сокращаются быстрее, чем толстые. В результате в отливке образуются напряжения, которые и вызывают появление трещин. Холодные трещины чаще всего образуются в тонкостенных отливках сложной конфигурации и тем больше, чем выше упругие свойства сплава, чем значительнее его усадка при пониженных температурах и чем ниже его теплопроводность. Опасность образования холодных трещин в отливках усиливается наличием в сплаве вредных примесей (например, фосфора в сталях). Для предупреждения образования в отливках холодных трещин необходимо обеспечивать равномерное охлаждение отливок во всех сечениях путем использования холодильников применять сплавы для отливок с высокой пластичностью проводить отжиг отливок и т. п.  [c.126]

Холодной сваркой в основном сваривают однородные или неоднородные металлы и сплавы, обладающие высокой пластичностью при нормальной температуре. В недостаточно пластичных металлах при больших деформациях могут образоваться трещины. Высокопрочные металлы и сплавы холодной сваркой не сваривают, так как для этого требуются очень большие удельные усилия, которые практически трудно осуществить.  [c.221]

В жестких сварных узлах, в которых образуются высокие сварочные напряжения, в закаленной з. т. в. возможно образование холодных трещин. Склонность к холодным трещинам повышается при насыщении металла водородом, который снижает пластичность закаленного металла. Источником водорода служит влага в покрытиях электродов, флюсах и защитных газах, которая разлагается в дуге, и атомарный водород насыщает жидкий металл сварочной ванны. В результате диффузии водорода им насыщается также 3. т. в.  [c.232]

Титан и его сплавы сваривают в защитной атмосфере аргона высшего сорта. При этом дополнительно защищают струями / и 2 аргона корень шва и еще не остывший до температуры 350 °С участок шва 3 (рис. 5.50). Перед сваркой проволоку и основной металл дегазируют путем отжига в вакууме. Допустимое количество газов в швах составляет Н. < 0,01 %, О. < 0,1 % и N2 < 0,05 %. При большем содержании газов снижается пластичность металла сварных соединений, кроме того, титановые сплавы становятся склонными к образованию холодных трещин. Ответственные узлы сваривают в камерах с контролируемой аргонной атмосферой, в том числе и обитаемых, в которых сварщики работают в скафандрах.  [c.237]

Операциями, способствующими растрескиванию латуни, являются горячая и холодная обработка давлением, вытяжка, волочение труб без оправки и др. Латунь обладает высокой пластичностью при 200° С, которая при дальнейшем повышении температуры снижается до минимума, и на изделиях могут появиться трещины. Растрескивание латуни наблюдается также, когда вследствие термической обработки прочность материала ниже  [c.114]

Сера образует с медью эвтектику Си — u S, которая отрицательно влияет на механические свойства металла, снижая его пластичность при холодной и горячей обработке.  [c.247]

Отжигу на зернистый перлит подвергают также тонкие листы н прутки из низко- и среднеуглеродистой стали перед холодной штамповкой или волочением для повышения пластичности.  [c.198]

Псевдо Р-титановые сплавы содержат в структуре в основном Р фазу, упрочняются термической обработкой в значительных сечениях и обладают высокой пластичностью в холодном состоянии. Термическая стабильность выше 200 С не велика, особенно при нагружении.  [c.320]


Холодная пластичность может наблюдаться также у некоторых неметаллических материалов (например, у горных пород), однако для ее проявления необходимо весьма большое всестороннее сжатие. В частности, мрамор, являясь при обычном (атмосферном) давлении типично хрупким материалом, в условиях высокого давления ( 0 кГ1см ) деформируется пластически, не разрушаясь (см. главу VIII, 8.6). В отличие от этих материалов, металлам холодная пластичность свойственна при нормальном давлении.  [c.726]

На первом этапе разрушения, когда меняется главным образом структура, скорость всех событий определяется скоростью перемещения структурных элементов. Следовательно, здесь доминируют два фактора силовой, ответственный за холодную пластичность, и термофлуктуационньш, ответственный за крип. Если первый этап является основным по какой-либо физической шкале, например во времени или в пространстве деформаций, длительность полного разрушения будет полностью, определяться скоростью деформации.  [c.76]

Эффективность легирования а-образующими элементами иллюстрируется политермическим разрезом тройной диаграммы состояния при 15% Со, приведенным на рис, 4-6 [4-3], Видно, что при комплексном легировании 1% ЫЬ и 1% А1 у- и (а+у)-области сужаются настолько, что открывается довольно широкое поле а-фазы в пределах 23—32% Сг вплоть до (а4-а")-области расслоения. Сплавы, входящие в эту зону составов, могут быть гомогенезированы при любой температуре выше области расслоения. Аналогичный эффект оказывают присадки V (около 5%) и У-ЬТ1 (3-Ь2%) [4-19]. Кремний уменьшает критическую скорость охлаждения сплавов, содержащих 23—25% Со, от 60 до 10 К/с [4-2], а также повышает горячую и холодную пластичность сплавов. Оптимальное с точки зрения магнитных свойств содержание каждой из технологических присадок составляет 1 %.  [c.202]

Упрочняющая термическая обработка заключается в закалке с 515 — 525°С сплава ВАД23 и 495—605°С сплава 01420 в холодной воде и старении при Л/О С, 10—12 ч, что обеспечивает максимальную прочность (0п = 55- - 60 кгс/мм ), но недостаточную пластичность (б = 4ч-5%) и конструктивную прочность (надежность).  [c.588]

При прессовании, так же как и при холодном выдавливании (схемы деформирования металла в этих процессах аналогичны), металл подвергается всес юроннему неравномерному сжатию и поэтому имеет весьма высокую пластичность. Коэффициент, характеризующий степень деформации и определяемый как отношение площади сеченмя заготовки к площади сечения прессуемого профиля, при прессовании составляет 10—50.  [c.116]

Для металлов с пониженной свариваемостью характерно образование горячих или холодных трещин в шве и з. т. в. (рис. 5.48). Причины возникновения трещин снижение прочности и пластичности как в процессе формирования сварного соединения, так и в по-слесварочный период вследствие особенностей агрегатного состояния, полиморфных превращений и насыщения газами развитие сварочных деформаций и напряжений, вызывающих разрушение металла, если они превышают его пластичность и прочность.  [c.229]

Сталь Х28, содержащая до 27—30% Сг и 0,15% С, принадлежит к сталям ферритного класса и не подвергается закалке. Стали Х17 и Х28 обладают достаточно высокой пластичностью как в горячем, так и в холодном состоянии. Однако сварка для них опасна вследствие пониженной пластичности сварных швов и появления в зоне термического влияния склонности к меж-кристаллитиой коррозии.  [c.217]

Чистый никель в химическом машиностроении нашел сравнительно ограниченное применение, несмотря на то что, помимо коррозионной стойкости, он обладает повышенной жаростойкостью, значительной пластичностью, хорошими механическими показателями и способностью подвергаться различным видам механической обработки (никель легко прокатывается в горячем и холодном состоянии). Объясняется это тем, что никель не имеет особых преимугцеств по сравнению с нержавеющими сталями, но в некоторых средах, в которых легированные стали непригодны, нашли примеггеиие сплавы никеля с медью и его сплавы с молибденом.  [c.255]

Холодная деформация сопровождается уменьшением пластичности металла. Поэтому относительное остаточное удлинение 6 наиболее деформированных волокон необходимо ограничивать. Например, согласно Строительным нормам и правилам (СНиП) допускают 6 при ХОЛОДНО) правке до i% при холодной гибке — до 2%, что соответствует радиусу изгиба ие более 50 толщин листа при иранке и не более 25 толн1,ин листа при гибке. Исходя и.ч -зтого, устанавливают предельные значения искривлений, исправление которых  [c.34]

При отжиге стали, кроме рекристаллизации ( еррита, может протекать ироцесс коагуляции и сфероидизации ттементита. Это повышает пластичность, что облегчает холодную обработку давлением (глубокую вытяжку). Рекристаллизационному отжигу часто подвергают электротехнические, нержавею1цие и другие стали.  [c.192]

Алюминий обладает высокой коррозионной стойкостью вследствие образования на его поверхности тонкой прочной пленки AI2O3. Чем чище алюминий, тем вьние его коррозионная стойкость Механические свойства отожженного алюминия высокой чистоты а = 50 МПа, а,,,2 = 15 МПа, б 50 % и технического алюминия (АДМ) Од = 80 МПа, а,,,2 = 30 ЛШа, б = 35 %. Модуль нормаль ной упругости Е = 7 ГПа. Холодная пластическая деформация повышает технического алюминия (АДН) до 150 МПа, но относи тельное удлинение снижается до 6 %. Благодаря высокой пластичности в отожженном состоянии алюминий легко обрабатывается давлением, но обработка резанием затруднена. Сваривается всеми видами сварки.  [c.321]

Отжиг для разупрочнения сплавов (полный отжиг), проводят при 350—430 Ч] с выдержкой I—2 ч. При этих температурах происходит полный распад пересыщенного твердого раствора и коагуляция упрочпяюитих фаз. Скорость охлаждения во избежание закалки не должна превышать 30 °С/ч. После отжига сплав имеет низкие значения временного сопротивлеиия, удовлетворительную пластичность и высокую сопротивляемость коррозии под напряжением. Отожженный материал способен выдерживать холодную обработку давлением с высокими степенями деформации.  [c.327]

И сплава АВ изготовляют различные полуфабрикаты листы, трубы, и т. д., используемые для элементов конструкций, несун1,их умеренные нагрузки, кроме того, лопасти винтов вертолетов, кованые детали двигателей, рамы, двери и т, д., для которых требуется высокая пластичность в холодном и горячем состояниях.  [c.330]

Сплавы обладают хорошей пластичностью в горячем состоянии и сравнительно легко деформируются в холодном состоянии после отжига. Листы из сплава В95 плакируют сплавом алюминия с 0,9— 1,3 % Zn для повышения коррозионной стойкости. Сплав В95 применяют в самолетостроении для нагруженных конструкций, работающих длительное время при <100—120 °С (обшивка, стрингеры, нпшпгоуты, лонжероны и т. д. силовые каркасы строительных сооружений и т. д.). Сплав В96 используют в виде прессованных и кованых изделий, рекомендуется для сжатых зон конструкций или для деталей без концентраторов напряжений.  [c.330]

Магниевые сплавы, имеющие гексагональную реиютку, при низких температурах малопластичны, так как сдвиг происходит только по плоскостям базиса (0001). При нагреве появляются дополнительные плоскости скольжения (1011) и (1120), и пластичность возрастает. Поэтому обработку давлением ведут при повышенных температу )ах. Чем меньше скорость деформации, тем выше технологическая пла стичиость магниевых сплавов. Прессование в зависимости от состава сплава ведут при 300—480 С, а прокатку в интервале температур от 340—440 С (начало) до 225—250 С (конец). Штамповку проводят в интервале 480—280 °С в закрытых штампах под прессами. Вследствие текстуры деформации полуфабрикаты (листы, прутки, профили и др.) из магниевых сплавов обнаруживают сильную аии и)трои1ио механических свойств. Холодная прокатка т )ебу1т частых промежуточных отжигов. Магниевые сплавы удовлетворительно свариваются и легко обрабатываются резанием (см. табл. 24).  [c.341]


Сплав МА1 обладает высокой технологической пластичностью и коррозионной стойкостью, хорошей свариваемостью. По механи ческим свойствам он относится к сплавам низкой прочности. Иьсление в сплав А)—Мп 0,2 % Са (АМЗ) измельчает зерпо, иоиьпиаст механические свойства и облегчает деформацию в холодном состоянии.  [c.341]


Смотреть страницы где упоминается термин Холодная пластичность : [c.725]    [c.101]    [c.117]    [c.232]    [c.9]    [c.220]    [c.221]    [c.221]    [c.51]    [c.192]    [c.250]    [c.253]    [c.329]    [c.329]    [c.330]   
Смотреть главы в:

Прикладная механика твердого деформируемого тела Том 1  -> Холодная пластичность



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте