Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтона характеристическая

Подробное изложение принципа Даламбера, уравнений Лагранжа, вариационных принципов, вариации произвольных постоянных, оптики Гамильтона, характеристической функции, уравнений Гамильтона — Якоби, разделения переменных, интегральных инвариантов, систематическое интегрирование систем канонических уравнений, канонические преобразования, подстановки или производящие функции, эквивалентные системы.  [c.442]


Вместо главной функции Гамильтона введем характеристическую функцию Якоби. Характеристическая функция связана с главной функцией некоторым соотношением. Это соотношение совпадает с соотношением между механическим действием согласно Гамильтону и Остроградскому и механическим действием согласно Эйлеру и Лагранжу. Рассмотрим снова функцию  [c.372]

Характеристическая функция Гамильтона. В случае простого гармонического колебания мы смогли найти полный интеграл уравнения Гамильтона — Якоби. В основном это удалось сделать потому, что S можно было разбить на две части, одна из которых содержала только q, а другая — только /. Мы сейчас увидим, что если старый гамильтониан не содержит явно t, то такое разделение всегда возможно.  [c.308]

S.31 характеристическая функция ГАМИЛЬТОНА 309  [c.309]

Функция W известна как характеристическая функция Гамильтона. Мы видим, что она осуществляет каноническое преобразование, в котором все новые координаты являются циклическими. В предыдущей главе мы говорили, что в случае постоянного И такое преобразование, в сущности, целиком решает задачу, так как интегрирование новых уравнений движения становится при этом тривиальным. Канонические уравнения для Р,-фактически снова подтверждают, что импульсы, соответствующие циклическим координатам, являются постоянными  [c.309]

Мы рассмотрели два метода решения задач механики один с помощью главной функции Гамильтона, другой с помощью характеристической функции Гамильтона. Полученные результаты можно записать теперь в виде следующей сравнительной схемы.  [c.310]

ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ ГАМИЛЬТОНА  [c.311]

Аналогичное разделение переменных в характеристической функции Гамильтона можно произвести в том случае, когда все координаты, кроме одной, являются циклическими. Рассмотрим, например, тот случай, когда единственной нециклической координатой является q. Будем искать W в виде  [c.314]

W характеристическая функция Гамильтона,  [c.409]

Wi характеристическая функция Гамильтона в задаче о разделении переменных, WI угол (в переменных действие — угол),  [c.409]

Функциональная производная лагранжиана 383 Функция Гамильтона главная 302 -- характеристическая 308  [c.414]

В ТО время как в уравнениях Лагранжа независимыми переменными являлись обобщенные координаты и обобщенные скорости в уравнениях Гамильтона которые мы теперь выведем двумя различными способами, независимыми переменными являются обобщенные координаты qk и обобщенные импульсы р/., причем последние определяются выражением (36.9а). Далее, в то время как в уравнениях Лагранжа характеристической функцией была свободная энергия Т — У, рассматриваемая как функция qk и qk, в уравнениях Гамильтона роль такой характеристической функции играет полная энергия Т + V, рассматриваемая как функция qk и pk- Назовем ее функцией Гамильтона и обозначим через H q, р), подобно тому, как мы называли свободную энергию функцией Лагранжа и обозначали ее через L q, q). Функции Н и L связаны соотношением (34.16), которое, учитывая определение р/., можно переписать в виде  [c.288]


Идея о нахождении фундаментальной функции, из которой при помощи дифференцирования и конечных преобразований без всякого интегрирования могли бы быть получены все решения уравнений движения, принадлежит Гамильтону. Он первый доказал существование такой функции в геометрической оптике, назвав ее там характеристической функцией эта функция оказалась необычайно полезной в целом ряде задач. Позднее, в своих исследованиях по динамике, Гамильтон снова столкнулся с той же самой функцией, назвав ее на этот раз главной функцией . Ввиду общей вариационной основы у оптики и механики, эти две концепции эквивалентны и открытие Гамильтона относится по существу к вариационному исчислению, а специальная форма вариационного интеграла несущественна. (Этот интеграл определяет время в оптическом принципе Ферма и действие в механическом принципе Лагранжа.)  [c.257]

Одно из наиболее значительных открытий Гамильтона заключается в осознании и реализации того факта, что задачи механики и геометрической оптики могут рассматриваться с единой точки зрения. Он оперировал с характеристической или главной функцией и в оптике, и в механике. Эта функция обладает тем свойством, что при помощи лишь дифференцирования из нее можно определить как траекторию движущейся частицы, так и траекторию светового луча. Более того, и в оптике, и в механике характеристическая функция удовлетворяет одному и тому же дифференциальному уравнению. Решение этого уравнения в частных производных при соответствующих граничных условиях эквивалентно решению уравнений движения.  [c.391]

Гамильтон называет функцию S, к которой относятся приведенные выше рассуждения, главной функцией задачи. Он рассматривает сверх того другую функцию, которую он называет характеристической и которую мы обозначим через V. Мы считаем своим долгом дать здесь определение этой функции V и изложить наиболее важное ее свойство. Гамильтон впервые дал именно эту функцию, и я полагаю, что при ознакомлении с пей легче всего будет понять те идеи, которыми он руководствовался.  [c.564]

Это и есть, по существу, преобразование Гамильтона системы (1). Остается еще установить одно особенно важное обстоятельство, заключающееся в том, что правые части уравнений (1 ), (2 ) можно выразить посредством одной единственной функции от р, q, t, называемой функцией Гамильтона i) или характеристической функцией, так что система первого порядка (1 ), (2 ) с формальной точки зрения будет столь же простой, как и первоначальная лагранжева система, зависящая от одной только функции 2 ). Функция Гамиль-  [c.240]

СлучАй характеристической функции, не зависящей от времени. При этом предположении для уравнения Гамильтона—Якоби можно искать полный интеграл в виде  [c.302]

Наиболее замечательными случаями, в которых действительно удается указать такой полный интеграл, являются те, к которым приложим метод разделения переменных. Этим мы хотим сказать, что при характеристической функции, не зависящей от t, уравнению Гамильтона — Якоби (п. 38)  [c.339]

Добавлена новая глава XII Теория импульсивных движений и 6 главы XI Переменные действие-угол , расширен п. 95, посвященный эллиптическим интегралам и функциям, в 4 главы XI добавлено несколько новых примеров канонических преобразований, а в 5 этой же главы — новый п. 178, в котором рассматривается характеристическая функция Гамильтона.  [c.14]

Характеристическая функция Гамильтона. Функцию У, входящую в правую часть равенства (14), называют характеристической функцией Гамильтона. Она удовлетворяет уравнению (13) и была введена в п. 177 как не зависящая от времени часть производящей функции 5, задающей свободное каноническое преобразование, приводящее функцию Гамильтона f( i,..., pi,..., рп) консервативной или обобщенно консервативной системы к функции % = 0.  [c.361]

Таким образом, характеристическая функция Гамильтона задает каноническое преобразование, приводящее функцию ...,  [c.362]

Замечание 3. Выбор величин входящих в характеристическую функцию Гамильтона, в качестве новых импульсов является в некоторой степени произвольным. Постоянные o i, 2,..., Oin-i имеют, вообще говоря, определенного физического смысла, а просто представляют собой набор постоянных, появляющихся в процессе нахождения полного интеграла уравнения Гамильтона-Якоби.  [c.362]


Случай одной степени свободы. Продолжим начатое в п. п. 177-179 изучение некоторых вопросов, связанных с интегрированием консервативных и обобщенно консервативных систем. Будем изучать системы, движения которых обладают описанным ниже свойством периодичности. Для таких систем Делонэ предложил специальный выбор постоянных импульсов а (г = 1, 2,..., п) в характеристической функции Гамильтона п. 178. Эти новые импульсы представляют собой п независимых функций от набора величин появляющихся при нахождении полного интеграла уравнения Гамильтона-Якоби. Они называются действиями (точные определения см. далее) и ниже чаще всего будут обозначаться /. Канонически сопряженные к ним координаты wi называются угловыми переменными. Переменные действие-угол wi весьма удобны для описания движений, обладающих свойством периодичности. Они находят широкое применение в теории возмущений.  [c.371]

НЬЮ свободы, причем ф 0. Тогда, согласно п. 177-179, характеристическая функция Гамильтона V = V q ), где а = h — постоянная  [c.371]

О переменных действие-угол для системы с п степенями свободы. Ограничимся лишь случаем, когда уравнение (13) п. 177, определяющее характеристическую функцию Гамильтона F, является уравнением с разделяющимися переменными. Тогда  [c.379]

Пусть характеристическое уравнение, соответствующее линеаризованной системе уравнений движения, задаваемой функцией Гамильтона Я2, имеет только простые чисто мнимые корни (/с = 1, 2,..., п). Тогда, как показано в предыдущем пункте, подходящим выбором канонически сопряженных переменных функцию Н2 можно представить в виде правой части равенства (32). Если еще сделать каноническую замену переменных  [c.399]

Задача о параметрическом резонансе. Линейные гамильтоновы системы, содержащие малый параметр. В приложениях матрица Н( ) системы (3) обычно зависит от одного или нескольких параметров. Задача о параметрическом резонансе дли системы (3) состоит в определении тех значений параметров, при которых ее характеристическое уравнение (14) имеет корни (мультипликаторы) с модулями, большими единицы. Иными словами, эта задача состоит в нахождении тех значений параметров, при которых система (3) неустойчива. Ограничимся рассмотрением того частного случая, когда функция Гамильтона соответствующая системе (3), представляется в виде сходящегося ряда по степеням малого параметра е  [c.550]

Функция Гамильтона 285, 343, 353 --характеристическая 361  [c.569]

Уравнения в вариациях для системы Гамильтона. Если исходные уравнения движения имеют гамильтонову форму и допускают периодическое решение, то два характеристических показателя равны нулю. Кроме того, если ft есть собственное значение матрицы монодромии, то 1/pi и [х также являются собственными значениями. Таким образом, если характеристический показатель % не является ни вещественным, ни чисто мнимым, то другие характеристические показатели равны — к, к и —А,. Если же характеристический показатель % является вещественным или чисто мнимым, то другой характеристический показатель равен —X.  [c.469]

Функция Гамильтона Н в аноничеоких уравнениях играет роль подобную функции Лагранжа в уравнениях Лагранжа. Ее задание равносильно по становке задачи, в связи с этим функция Гамильтона является характеристической функцией механической системы.  [c.91]

Подобно функциям Лагранжа и Гамильтона, функция Раусса является характеристической. Занимая промежуточное место между L и Н функция R обращается в L и Я при яг = 0 и m = s.  [c.95]

Координата ср циклическая. Поэтому = а,р = onst, а характеристическая функция Гамильтона имеет вид  [c.382]

Если же функция Н не является знакоопределенной или зависит от времени, то задача об устойчивости становится весьма сложной. Для системы (1) справедлива теорема Лиувилля о сохранении фазового объема, поэтому невозмущенное движение не может быть асимптотически устойчивым в системах, описываемых дифференциальными уравнениями Гамильтона, возможна либо устойчивость, либо неустойчивость. Следовательно, если линеаризованные уравнения не дают строгого решения вопроса об устойчивости (как, например, в случае установившихся движений при наличии у характеристического уравнения хотя бы одного корня с положительной вещественной частью), то возникает необходимость рассмотрения нелинейных членов в уравнениях (1), т. е. мы имеем критический случай теории устойчивости.  [c.543]


Смотреть страницы где упоминается термин Гамильтона характеристическая : [c.125]    [c.392]    [c.397]    [c.398]    [c.231]    [c.275]    [c.311]    [c.315]    [c.319]    [c.341]    [c.392]    [c.274]    [c.305]    [c.452]    [c.84]   
Аналитическая динамика (1999) -- [ c.377 ]



ПОИСК



Г характеристическое

Гамильтон

Гамильтон. Об общем методе в динамике, посредством которого изучение движений всех свободных систем притягивающихся или отталкивающихся точек сводится к отысканию и дифференцированию одного центрального соотношения или характеристической функции (перевод Л. С. Полака)

Гамильтона принцип интегральный вариационный характеристическая

Гамильтонова двухточечная характеристическая или главная функция. Уравнение Гамильтона — Якоби

Главная функция Гамильтона в независимых координатах. Характеристическая функция

Двухточечная характеристическая функция в пространстве событий и уравнение Гамильтона — Якоби

Зэк гамильтоново

Нормальная ферма автономной системы линейных гамильтоновых уравнений в случае простых чисто мнимых корней характеристического уравнения

Уравнение Остроградского — Гамильтона — Якоби частот (характеристическое)

Функция Гамильтона главная характеристическая

Функция Гамильтона характеристическая

Характеристические показатели гамильтоновых систем



© 2025 Mash-xxl.info Реклама на сайте