Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристические показатели гамильтоновых систем

Уравнения в вариациях для системы Гамильтона. Если исходные уравнения движения имеют гамильтонову форму и допускают периодическое решение, то два характеристических показателя равны нулю. Кроме того, если ft есть собственное значение матрицы монодромии, то 1/pi и [х также являются собственными значениями. Таким образом, если характеристический показатель % не является ни вещественным, ни чисто мнимым, то другие характеристические показатели равны — к, к и —А,. Если же характеристический показатель % является вещественным или чисто мнимым, то другой характеристический показатель равен —X.  [c.469]


Прежде чем переходить к задаче о параметрическом резонансе, рассмотрим зависимость мультипликаторов (и характеристических показателей) от параметра е. Так как функция Гамильтона (6.1) предполагается аналитической относительно 8, то правые части системы (1.1) также аналитичны. Тогда, как известно, любое решение X ( г) системы (1.1), для которого начальное значение не зависит от 8, будет аналитическим относительно е. В частности, аналитическими будут элементы x j ( 8) фундаментальной матрицы решений X (Р, г). Отсюда получаем следующую теорему А. М. Ляпунова если правые части системы (1.1) аналитичны относительно 8, то коэффициенты характеристического уравнения (4.3) будут аналитическими функциями г, причем область их аналитичности совпадает с областью аналитичности правых частей системы (1.1).  [c.43]

Центральная идея его метода — идея характеристической функции для каждой оптической системы лучей. Это характеристическое соотношение, различное для различных систем, таково, что геометрические свойства системы могут быть выведены из него методом, аналогичным тому, который был изобретен Декартом для алгебраического решения геометрических проблем. Все свойства оптических систем для каждой кривой или поверхности вытекают из основного соотношения. В этой теории устанавливается связь восьми величин, из которых шесть суть координаты двух переменных друг с другом оптически связанных точек в пространстве , седьмая есть индекс цвета (index of olour), что соответствует показателю преломления, а восьмая, которую Гамильтон назвал характеристической функцией, есть действие между двумя переменными точками. Эта функция V называется характеристической, ибо Гамильтон нашел, что в характере зависимости этой функции от семи названных выше величин заключены все свойства оптической системы. Поэтому Гамильтон говорит Я рассматриваю все проблемы математической оптики, относящиеся ко всем мыслимьш сочетаниям зеркал, линз, кристаллов и атмосфер, как сводимые к изучению этой характеристической функции, посредством... фундаментальной формулы  [c.206]

Региение вопроса об устойчивости по Ляпунову региения qj = pj = = О (далее будем иногда говорить об устойчивости системы (1) ) зависит от свойств функции Гамильтона. Если система (1) автономна, то функция Я будет ее первым интегралом и может быть принята за функцию Ляпунова V при региении задачи об устойчивости движения 1]. Если функция Я будет знакоопределенной, то система (1) устойчива. Если же система (1) не автономна или автономна, но п 2, и Я не является знакоопределенной функцией, то задача об устойчивости становится весьма сложной. Для системы (1) справедлива теорема Лиувилля о сохранении фазового объема, поэтому в ней невозможна асимптотическая устойчивость, а устойчивость может быть лигиь тогда, когда характеристические показатели системы с гамильтонианом Я2 будут чисто мнимыми. Так что задача об устойчивости системы  [c.114]

Пусть характеристические показатели =bz rj линеаризованной системы (1) — чисто мнимые и в системе нет резонансов до порядка к включительно. Тогда нормализуюгцим преобразованием функция Гамильтона (2) может быть приведена к виду  [c.119]


В главе 3 изучается устойчивость гамильтоновой системы с одной степенью свободы и 2я-периодической по времени функцией Гамильтона. К такой системе может быть, например, приведена задача об устойчивости периодических движений круговой ограниченной задачи трех тел, отличных от точек либрации. Предполагается, что линеаризованная система устойчива, а ее мультипликаторы различны. Частные случаи этой задачи рассматривались в классических исследованиях Леви-Чивита и в недавних работах Зигеля, Мермана, Каменкова и Мустахишева. В главе 3 рассматриваются как нерезонансный, так я резонансный случаи (когда характеристические показатели + X таковы, что число кХ будет целым при произвольном целом к > 3). Исследование основано на приведении функции Гамильтона к нормальной форме и последующем применении теоремы Ляпунова о неустойчивости и теоремы Мозера об инвариантных кривых [72]. Получены условия устойчивости и неустойчивости.  [c.11]


Смотреть страницы где упоминается термин Характеристические показатели гамильтоновых систем : [c.397]   
Смотреть главы в:

Аналитическая динамика  -> Характеристические показатели гамильтоновых систем



ПОИСК



Г характеристическое

Гамильтон

Гамильтона характеристическая

Гамильтонова система

Зэк гамильтоново

Показатели характеристически

Показатели характеристические

Системы Гамильтона



© 2025 Mash-xxl.info Реклама на сайте