Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

СВАРОЧНЫЕ Механические свойства

Для некоторых металлов (медь, алюминий, магний) и их сплавов наблюдается довольно резкое снижение механических свойств при нагреве, в результате чего в этом интервале температур металл легко разрушается от ударов, либо сварочная ванна  [c.340]

Графики этих зависимостей приведены на рис. 9.16. Малая активность марганца как раскислителя создает большие остаточные концентрации марганца в металле, но они не влияют на механические свойства стали (до 1 %). При высоких температурах и достаточно малых концентрациях Мп остаточная концентрация кислорода превышает предел концентрации насыщенного раствора Li (см. с. 329 ), которая показана на рис. 9.16 штриховой линией. Несмотря на малую раскислительную активность, марганец широко применяется в сварочной металлургии, так как кроме кислорода он извлекает из жидкого металла серу, переводя ее в MnS, плавящийся при 1883 К, поэтому при кристаллизации металла шва влияние легкоплавкой сульфидной эвтектики понижается и повышается сопротивление металла образованию горячих трещин. Обобщенная диаграмма плавкости Me — S для железа, кобальта и никеля приведена на рис. 9.17, указаны температуры плавления сульфидных эвтектик, лежащих ниже температур кристаллизации стали, никеля и кобальта.  [c.328]


Аргон и гелий не образуют химических соединений с металлами. Точно так же азот не взаимодействует с некоторыми металлами — медью, кобальтом и др. Поэтому процессы окисления, азотирования, наводораживания, а также растворения газов и вредных примесей в сварочной ванне связаны с несовершенством газовой защиты зоны сварки и проникновением в нее атмосферного воздуха. Кроме этого, наличие даже небольших концентраций вредных примесей в инертных газах, окисленных поверхностных слоев на кромках металла и сварочной проволоки, способствует образованию оксидов, нитридов и других соединений, заметно снижающих физико-механические свойства сварных соединений.  [c.385]

Фазовые и структурные превращения при сварке конструкционных сталей нередко вызывают понижение технологической прочности, механических и эксплуатационных свойств металла сварных соединений. Под технологической прочностью понимают способность материалов без разрушения выдерживать термомеханические воздействия в процессе сварки. В условиях указанных воздействий часто существенно понижаются механические свойства металла, что вместе с довольно высокими сварочными деформациями и напряжениями может служить причиной образования трещин.  [c.511]

Важной задачей является правильный выбор способа сварки в соответствии с назначением, формой и размерами конструкций. Назначение способа сварки в значительной степени определяется свариваемостью, особенно при соединении разнородных материалов, конструктивным оформлением сварных соединений, степенью их ответственности и производительностью процесса. Необходимо также учитывать тип соединений, присадочный материал, приемы и обеспечение удобства выполнения сборочно-сварочных соединений. Эти условия предопределяют механические свойства соединений и допускаемые напряжения, необходимые для прочностных расчетов конструкций. Так, для сварки длинных швов встык более технологично применение дуговой автоматической сварки. Толстостенные элементы соединяют электрошлаковой сваркой. Для сварки внахлест тонколистовых материалов рационально применение контактной сварки. Некоторые виды свариваемых материалов (алюминиевые и титановые сплавы, нержавеющие стали и т. п.) требуют надежной защиты зоны сварки от окисления, т. е. применения аргонно-дуговой, электронно-лучевой и диффузионной сварки. Необходимо также учитывать возможности механизации и автоматизации процесса выбранного способа сварки.  [c.164]


Термическая обработка сварных заготовок производится с целью улучшения свойств металла шва и околошовной зоны и для снятия сварочных напряжений. Режим термообработки определяется химическим составом, теплофизическими и механическими свойствами материала. Термообработка способствует обеспечению точности последующей механической обработки заготовки, а также стабильности размеров и формы сварного изделия в процессе эксплуатации.  [c.166]

Требования, предъявляемые к сварочным электродам и к электрическим контактам, очень близки (высокая тепло- и электропроводность и хорошие механические свойства при повышенных температурах), поэтому и применяемые материалы для сварочных электродов II электрических контактов аналогичны. В табл. 4 приведены наиболее популярные композиционные материалы, используемые при сварке.  [c.437]

Для установления возможности создания благоприятных физико-механических свойств металла и повышения работоспособности сварного соединения проводили исследование влияния различных вариантов сочетаний видов сварки, сварочных материалов и свариваемых сталей, технологических режимов сварки, термообработки, дополнительных напряжений на распределение электродных потенциалов в зонах сварного соединения, а также на изменение микро- и макронапряжений, структуру, микротвердость.  [c.237]

Изменение скорости остывания металла сварочной ванны и околошовной зоны сопровождается изменением структуры и механических свойств металла готового соединения, изменением условий формирования металла шва. В зависимости от применяемых основных и сварочных материалов для получения качественного соединения можно либо ограничиваться небольшим варьированием режимами сварки, либо необходимы дополнительные технологические приемы (предварительный или сопутствующий подогревы, утепление и т. п.).  [c.72]

Стрела экскаватора разрушается в основном по сварочному шву средней секции, а также по проушинам пяты, по месту сварки пяты с металлоконструкцией и по разным сечениям возле крепления головных блоков. Причинами разрушения при низких температурах являются концентраторы напряжений, низкая хладостойкость применяемого материала II его разупрочнение в зоне шва. Следует отметить, что хладостойкость применяемого материала уже при температуре — 10°С не удовлетворяет требованиям эксплуатации. Ударная вязкость в этом случае составляет 2 кг м/ м (рис. 35, е). Снижение ударной вязкости происходит в том же температурном интервале, что и рост относительной частоты разрушений (от 0°С до —20°С), т. е. основная ответственность за повышение аварийности данного узла ложится на низкие механические свойства применяемого материала.  [c.91]

Сварочные материалы, применяемые для сварки стальных конструкций, должны обеспечивать механические свойства металла шва и сварного соединения (предел прочности, предел текучести, относительное удлинение, угол загиба, ударную вязкость) не меиее нижнего предела свойств основного металла конструкции (табл. 15).  [c.24]

Механические свойства труб, штамповок, поковок, прутков н сварочной проволоки иэ титановых сплавов при комнатной и повышенных температурах  [c.187]

Сталь повышенной прочности 1 низколегированная 1 200 - 250 С Отпуск 670 — 7Ю°С для снятия сварочных напряжений, выравнивания структуры и механических. свойств. В некоторых случаях (например, ЭШС) — нормализация с отпуском  [c.138]

Термическая обработка для снятия сварочных напряжений — отпуск 630—650° С для получения пластичного сварного соединения и выравнивания "механических свойств — закалка с отпуском для сварных соединений, выполненных ЭШС, — нормализация, а выполненных КТС — отпуск.  [c.139]

Т ип электрода Состав наплавленного металла Марка электрода Рекомендуема я сварочная проволока по ГОСТу 2246—60 Содер- жание феррита а /о Механические свойства Примерное назначение  [c.58]


При оценке о кидаемых механических свойств металла шва необходимо учитывать действие следующих технологических факторов долю участия основного металла н формировании шва и его химический состав тип и химический состав сварочных материалов лютод п ре жим сварки тип соедииепнн п число проходов (слоев) в сварном шве размеры сварного соединения вели-  [c.198]

Для обеспечения эксплуатационной надежности сварных соединений необходимо, чтобы швы обладали не только заданным уровнем прочности, но и высокой пластичностью. Поэтому при выборе сварочных материалов необходимо стремиться к получению швов такого химического состава, при котором их механические свойства имели бы требуемые значения. Легирование металла шва элементами, входящими в основной металл, всегда повышает его прочностные характеристики, одповременпо снижая пластичность.  [c.248]

Легирование металла шва за счет основного металла позволит повысить свойства шва до необходимого уровня. Однако следует помнить, что доля участия основного лтеталла в металле njBa, а значит, и степень легирования зависят от способа сварки, применяемого реишма сварки и других технологических приемов. Поэтому при разработке технологического процесса сварки необходима расчетная проверка ожидаемых механических свойств металла шва для принятых режимов сварки и сварочных материалов (см. гл. V, 6).  [c.248]

При выборе сварочных материалов для молибденовых, хромомолибденовых и хромомолибденова]шдиевых теплоустойчивых сталей, кроме обеспечення необходимых механических свойств при температуре -f 20 °С, требуется га])антировать работоспособность швов при повышенных температурах, для которых предназначена свариваемая сталь. Это требование может быть выполнено только в том случае, если и шов будет легирован в необходимых количествах теми эледгептами, которые придают стали теплоустойчивость. Это также предупредит развитие диффузионных процессов между металлом шва и основным металлом. Поэтому при выборе сварочных материалов для этих сталей необходимо создавать композицию легирующих элементов, позволяющую получить шов, близкий к составу свариваемой стали. Это предусмотрено действующим ГОСТ 9467—75.  [c.249]

Механические свойства сварных соединений, сваренных приведенными выше сварочными материалами, кроме ударной вязкости в зоне термического влияния, соответствуют свойствам основного металла. Швы, выполненные автоматической сваркой под флюсом электродной проволокой марки Св-13Х25Н18 (а также и при ручной дуговой сварке электродами на этой проволоке, например марки ЦЛ-8), оказываются склонными к межкристал-литной коррозии, определяемой, видимо, повышенным содержанием углерода и отсутствием стабилизируюш,их элементов.  [c.277]

Сварочный нагрев и последующее охлаждение настолько изменяют структуру и свойства чугуна в зоне расплавления п около-пювной зоне, что получить сварные соединения без дефектов с необходимым уровнем свойств оказывается весьма затруднительно. В связи с этим чугун относится к материалам, облада-10ш,им плохой технологической свариваемостью. Тем не менее сварка чугуна нмеет очень большое распространение как средство исправления брака чугунного литья, ремонта чугунных изделий, а иногда и при изготовлении конструкций. Качественно выполненное сварное соединение должно по меньп1ей мере обладать необходимым уровнем механических свойств, плотностью (непроницаемостью) и удовлетворительной обрабатываемостью (обрабатываться реягущим инструментом). В зависимости от условий работы соединения к нему могут предъявляться и другие требования (например, одноцветность, жаростойкость н др.).  [c.324]

В перегреной сварочной ванне протекает ряд металлургических процессов испарение или окисление (выгорание) некоторых легирующих элементов, например углерода, марганца, кремния, хрома и др., и насыщение расплавленного металла кислородом, азотом и водородом из окружающего воздуха. В результате возможно изменение состава сварного шва по сравнению с электродным и основным металлом, а также понижение его механических свойств, особенно вследствие насыщения шва кислородом. Для обеспечения заданных состава и свойств шва в покрытие вводят легирующие элементы и элемеиты-раскислители.  [c.190]

Кристаллизация сварного шва начинается от границ оплавленного основного металла и протекает путем роста столбчатых кристаллитов к центру И1ва. При этом оси кристаллита, как правило, остаются перпендикулярными к поверхности движущейся сварочной ванны, в результате чего кристаллиты изгибаются и вытягиваются Б направленирг сварки (рис. 5.8). Вследствие дендритной ликвации примеси располагаются по границам кристаллитов, где они могут образовать легкоплавкие эвтектики и неметаллические включения. Это снижает механические свойства шва и в отдельных случаях люжет быть npii4HH0if образования горячих трещин.  [c.190]

Повышенное качество сварных швов обусловлено получением более высоких механических свойств наплавленного металла благодаря надежной защите сварочной ванны флюсом, интенсивному раскислению и лепгрованпю вследствие увеличения объема жидкого шлака, сравнительно медленного охлаждения шва под флюсом и твердой шлаковой коркой улучшением формы и поверхности сварного шва и постоянством его размеров по всей длине вследствие регулирования режима сварки, мехаиизированной подачи и перемещения электродной проволоки.  [c.194]

Сущность сварки в среде Oj состоит в том, что дуга горит в среде защитного газа, оттесняющего воздух от зоны сварки и защищающего наплавленный металл от О, и N2 воздуха. Особенностью данной сварки является сравнительно сильное выгорание элементов, обладающих большим сродством с Oj (С, А1, Ti, Si, Мп и др.). Окисление происходит за счет как Oj, так и атомарного О, который образуется при диссоциации Oj под действием тепла дуги. Непрерывный уход окислов С, Si, Мп из ванны приводит к значительному обеднению металла шва раскисли-телями, что ухудшает механические свойства соединения. Поэтому для получения качественных соединений необходимо при сварке в среде Oj иметь в сварочной ванне достаточное количество раскисляющих элементов, которые обычно вводят за счет проволоки (Св-08Г2С, Св-08ГС).  [c.61]


Сварочным флюсом (ГОСТ 9087—69) называется неметаллический материал, расплав которого необходим для сварки и улучшения качества шва. Флюс для дуговой сварки защищает дугу и сварочную ванну от вредного воздействия окружающего воздуха и осуществляет металлургическую обработку сварочной ванны. Флюс долйен обе- спечивать хорошее формирование и надлежащий химический состав шва, высокие механические свойства сварных соединений, отсутствие пор и трещин, устойчивость процесса сварки, легкую отделяе-мость шлаковой корки от поверхности шва.  [c.52]

Механические свойства металла шва или наплавленяги о металла, выполненные не указанными в настоящем стандарте сварочными материалами или способами, должны быть iie ниже требований, приведенных в табл. 1.4.  [c.36]

Целью анализа технической документации является установление номенклатуры технических параметров, предельных состояний, выявление наиболее вероятных отказов и повреждений, а также элементов и участков конструкций, рост повреж-денности и дефектности металла которых может привести к ресурсному отказу. На основе анализа технической документации составляют схему диагностируемого объекта с указанием его конструктивных особенностей расположение продольных, кольцевых и других сварных соединений, наличие запорно-ре-гулирующей арматуры, тройников, отводов, штуцеров и т. п. Отдельно отмечают обнаруженные отклонения от проекта. Указывают также химический состав и механические свойства металла конструкции технологию сварочно-монтажных работ методы и результаты входного и пооперационного контроля и предпусковых испытаний вид, время и объемы проведения реконструкционных (ремонтных) работ на данном сосуде или участке трубопровода результаты предыдуших освидетельствований и диагностик.  [c.157]

Процесс сварки конструкции сопровождается термическим и деформационным воздействиями на свариваемый металл, производимыми при определенных условиях, связанных с технологией получения неразъемного соединения. Данные условия определяют способ сварки, тип и химический состав применяемых материалов (сварочной проволоки. электрода, флюса, газа и т. д.) и зависят от многих факторов, главными из которых являются марка свариваемых сталей и сплавов, их толщина и тип сварной конструкции (балка, ферма, оболочка, детали машин, корпуса раз/шчно-го рода изделий). При этом химический состав и механические свойства металла шва, выполненного, например, сваркой плавлением, в значительной степени отличаются от состава и свойств основного металла, так как на стадии существования сварочной ванны происходит смешивание наплавляемого присадочного металла и расплавляемого основного. Поэтому с точки зрения химического состава и механических свойств принято считать, что в сварном соединении имеются как минимум два различных металла — свариваемый и металл шва. Последний рассматривают как  [c.13]

Различные условия кристаллизации сварочной ванны приводят также к структурной неоднородности отдельных зон сварных соединений /5/, то есть к появлению прослоек, отличающихся своей структурой. Связь между структурой химически однородных сталей и сплавов и их механическими свойствами устанавливается в металловедческих исследованиях. В некоторой степени это может быть перенесено и на сварные соединения, например, для способов сварки без присадочного металла (контактная стьшовая, точечная, шовная и другие способы сварки давлением, когда соединение поверхностей производится с образованием или литого ядра из основного металла, или за счет плавления и деформации торцев). Однако в большинстве случаев для сварных соединений приходится учитывать совместное влияние химической и структурной неоднородности.  [c.14]

Голиков В.Н., Анисимок Ю.И. Прочность сварных соединений с ли-исйно-переменными механическими свойствами металла мягкой прослойки /Тез. докл. Всесоюзн. НТ-конф, Экономия материальных, энергетических и трудовых ресурсов в сварочном производстве. — Челябинск Изд. ЧГТИ, 1986 — с, 303—305.  [c.268]

Таким образом, анизотропия механических свойств стальных листов, вызывающая склонность к слоистому растрескиванию во время сварки конструкции, может приводить к снижению сопротивления конструкции усталостному разрушению. Проведенные исследования показали, что слоистое растрескивание — это не только сварочная технологическая проблема, но и явление, ока.чывающее влияние на безопасность конструкции, которое следует учитывать в прочностном анализе при проектировании конструкции заданной долговечности.  [c.270]

Одним из разделов совместной советско-американской программы исследования свариваемости и механических свойств конструкционных материалов и сварных соединений, предназначенных для резервуаров хранения и транспортировки ожиженных газов , был предусмотрен обмен сварными соединениями сплавов системы А1—Mg и сварочной проволокой, используемой в качестве присадочного материала. В этой программе США были представлены лабораториями фирмы Al oa, Aluminum ompany . С советской стороны исполнителем программы был Институт  [c.105]

Нелегированная углеродистая сталь — важнейший конструкционный материал, уже длительное время широко используемый в морских условиях. В последнее время более широкое применение находят низколегированные стали, обладающие повышенной прочностью. В некоторых специальных случаях применяют также другие материалы иа основе л<елеза, например чугун, а также сварочное и технически чистое железо. Выбор сталей в качестве материала для морских конструкций обусловлен такими факторами, как доступность, низкая стоимость, хорошая обрабатываемость, опыт ироектирования, физические и механические свойства.  [c.28]

Испытание стали на свариваемость состоит в определении пластических свойств сварного соединения или сновного металла, подвергнутого тепловому воздействию сварочного процесса. Под свариваемостью понимают способность стали при определенных конструктивных и технологических условиях подвергаться воздействию термического цикла сварки без образования трещин и заметного ухудшения механических свойств сварного соединения.  [c.570]

Из контрольных угловых и тавровых сварных соединений вырезаются только шлифы для металлографического исследования. Механические свойства антикоррозионной нанлавки определяются по результатам испытаний наплавочных материалов, проводимых согласно требованиям технических условий на приемку аустенитных сварочных материалов, предназначенных для выполнения антикоррозионного покрытия.  [c.216]

Разработанное новое безокислительное электродное покрытие без мрамора и жидкого стекла обеспечивает удовлетворительные технологические характерпстивги сварочных электродов, малую окисляемос гь алюминия электродного стержня и отсутствие увеличения конценграции кремния в наплавленном металле в сравнении с составом электродного стержня.. Это позволяет получать металл сварного шва, малосклониый к образованию горячих треш,ин, и удовлетворительные его механические свойства при сварке высоколегированных аустенитных марганцево-алюминиевых сталей.  [c.200]


Низкоуглеродистая сталь с содержанием до 0,25%С Среднеуглеродистая сталь с содержанием 0,26 - 0,45%С Высокоуглеродистая сталь с содержанием 0.46 — 0.759Й С 120—150°С — на многослойных швах при сварке больших толшин (40 ММ) 150 - 300°С 300 - 450°С Отпуск при 640 — 670°С для снятия сварочных напряжений, выравнивания структуры и механических свойств. В некоторых случаях (Например, ЭШС) нормализация при 920—940 С с последующим отпуском. Для получения требуемых механических свойств сварного соединения при сварке среднелегированной стали применяется закалка с последующим отпуском  [c.137]

Стабилизированные Ti стали 0Х17Т и Х25Т при кратковременном высокотемпературном нагреве (в том числе и сварочном) не имеют фазовых превращений, однако их механические свойства ухудшаются. Наиболее сильно снижаются значения ударной вязкости основного металла у зоны сварного шва, порог хладноломкости при этом сдвигается в область положительных температур.  [c.22]


Смотреть страницы где упоминается термин СВАРОЧНЫЕ Механические свойства : [c.60]    [c.87]    [c.222]    [c.345]    [c.7]    [c.8]    [c.26]    [c.491]    [c.40]    [c.172]    [c.27]    [c.268]   
Машиностроение Энциклопедический справочник Раздел 1 Том 2 (1948) -- [ c.852 ]



ПОИСК



18 — Механические свойства при из сплавов титановых сварочная Механические свойства

Сварочные Свойства

Стали аустенитно-ферритные 75 - Коррозионная стойкость 77 - Механические свойства 77 - Сварочные материалы 78 Способы сварки 78 - Применение 79 Химический состав

Стали мартенситные 65 - Механические свойства 67, 69 - Рекомендации по тепловому режиму 68 - Сварочные материалы



© 2025 Mash-xxl.info Реклама на сайте