Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Молибден Определение в стали

В предыдущем разделе рассматривалась прочность сцепления покрытия (молибден) с основой (сталь) при установлении оптимальных режимов прокатки (оптимальная температура прокатки 950° С, степень обжатия 50%). Необходимо было выяснить, какими механическими свойствами обладает биметаллический композит. Особое внимание было уделено исследованию характера разрушения (определению ударной вязкости, температуры перехода в хрупкое состояние), тем более что этот вопрос в ранних работах по различным биметаллическим композициям практически вообще не изучался.  [c.101]


В сталях всех марок присутствуют постоянные примеси. Некоторые примеси (марганец, кремний) необходимы в металле по условиям технологии выплавки стали, другие (вредные) примеси (сера, фосфор) не поддаются полному удалению. Постоянный характер носят также так называемые скрытые примеси (кислород, водород, азот), содержание которых мало. К специальным примесям относят легирующие добавки для придания стали определенных свойств (никель, молибден, ванадий, титан и др.), а также углерод, марганец, кремний. В марках легированных металлов и сплавов указывается наличие тех или иных элементов буквами русского алфавита (табл. 2, стр. 5—6).  [c.11]

Определение легирующих элементов в стали производится при помощи специального оптического прибора (стилоскопа) и генератора. Принцип действия установки следующий. Между образном, подлежащим исследованию, и трубой стилоскопа зажигают электрическую дугу. Находящиеся в исследуемом образце химические элементы (хром, молибден и др.) под влиянием электрической дуги испаряются и излучают свет. Различные элементы излучают световые волны различной длины. Излучаемый элементами свет при рассмотрении в стилоскопе разлагается в виде спектра, представляющего систему спектральных линий, характерных для каждого элемента. Чем больше содержание элемента в испытуемом образце, тем интенсивнее спектральные линии этого элемента в спектре.  [c.65]

Определение молибдена [11,21]. Молибден может присутствовать в стали в виде простых карбидов и сложных карбидов с цементитом.  [c.102]

Элементы второй группы повышают устойчивость феррита. Ко второй группе относятся хром, кремний, молибден, ванадий, вольфрам, титан, ниобий и алюминий. При содержании элементов второй группы выше определенного количества сталь в интервале температур от комнатной до перехода в жидкое состояние имеет структуру легированного феррита. Такая сталь называется ферритной.  [c.49]

Наиболее существенное влияние на полиморфизм железа оказывают хром, вольфрам, ванадий, молибден, ниобий, марганец, никель, медь и другие металлы. Они расширяют или сужают область существования у-железа. Например, введение в сталь никеля, марганца и меди понижает температуру точки и повышает температуру точки А , что (при определенном их содержании) расширяет область у-железа от температуры плавления до комнатной (рис. 5.2, а). Такие сплавы представляют собой твердый раствор легирующего элемента в у-же-лезе и относятся к сталям аустенитного класса.  [c.79]

Кроме хрома, в стали вводят никель, марганец, углерод, молибден, вольфрам, ниобий и другие элементы для придания им специальных свойств (повышенной коррозионной стойкости в агрессивных средах, более высоких механических свойств при высоких температурах, определенных физических свойств) и структуры.  [c.10]


Однако ванадий, молибден, бор, вольфрам оказывают отрицательное влияние на окалиностойкость. Отрицательное влияние этих элементов начинает сказываться с определенных концентраций их в стали, что связано с образованием на поверхности сталей нестойких окисных плен или легкоплавких или летучих окислов. Так, например, присадка молибдена к стали способствует образованию на поверхности металла летучих окислов, которые нарушают сплошность защитных окисных пленок и способствуют усиленному окислению стали в присутствии ванадия и бора образуются легкоплавкие окисные пленки, способствующие усилен-  [c.641]

Анализируя результаты определения прокаливаемости стали с молибденом, увеличение прокаливаемости обычно объясняют влиянием на нее молибдена, находящегося в твердом растворе.  [c.40]

Марка легированной стали состоит из сочетания определенных букв и цифр, характеризующих ее химический состав. Входящие в маркировку буквы обозначают следующее Г — марганец, С — кремний, X — хром, Н —никель, М—молибден, Ю — алюминий. В —вольфрам, Т —титан, Ф —ванадий. Б —ниобий, К —кобальт, Д — медь, Р — бор, А — азот. Цифры, входящие в марку, указывают на содержание конкретного элемента в стали. Двузначное число, стоящее в начале марки стали, указывает на среднее содержание углерода в сотых долях процента. Цифра, стоящая справа от букв, обозначающих элементы, показывает примерное содержание этого элемента в процентах.  [c.11]

Карбидная фаза при отпуске претерпевает специфические превращения. С повышением температуры увеличивается подвижность атомов легирующих элементов, благодаря чему становится возможным их перераспределение между цементитом и ферритом. Концентрация легирующих элементов в цементите увеличивается и при определенных значениях решетка цементита перестраивается в решетку того специального карбида, который может находиться в данной стали в равновесии с ферритом Образовавшиеся дисперсные карбиды могут значительно увеличивать твердость. Это одна из причин наблюдающегося явления так называемой вторичной твердости, т. е. увеличения твердости после отпуска в интервале 500— 600° С (наблюдается в сталях, легированных хромом, молибденом, ванадием и некоторыми другими элементами).  [c.219]

Элементы второй группы (хром, кремний, молибден, ванадий, вольфрам, титан и алюминий) уменьшают устойчивость аустенита и повышают устойчивость феррита. Они снижают критическую точку Л4 и повышают А3. Тем самым они способствуют сокращению аустенитной области. Влияние этих элементов на полиморфные превращения характеризует диаграмма состояния, представленная на рис. 88, б. По оси абсцисс на диаграмме состояния показано содержание элемента, повышающего устойчивость феррита (возрастает слева направо). Если содержание этих элементов в стали превышает определенный процент, то сталь от комнатных температур до линии солидуса будет иметь структуру феррита. Такая сталь называется ферритной.  [c.157]

По другим примесям. Сопровождающие примеси, к которым относятся медь, олово, хром, молибден и никель, попадают в сталь в основном из скрапа. Большинство этих элементов упрочняет материал, поэтому их содержание должно быть сведено к минимуму, хотя оно и не оговаривается нормами. В сталях, предназначенных для весьма глубокой вытяжки, максимальное содержание меди не должно превышать 0,15%. Большее содержание меди нежелательно в основном из-за присутствия определенного количества олова, которое, взаимодействуя с медью, отрицательно влияет на качество поверхности материала при горячей прокатке и на травимость полосы [1, 3]. В обычных марках стали для глубокой вытяжки содержание 0,20% Си еще не вызывает больших трудностей при вытяжке [1]. В автомобильном листе допускается содержание <0,03% Сг и <0,10% N1. В работе [1] указывается, что в сталях, предназначенных для весьма глубокой вытяжки, суммарное содержание хрома, молибдена и никеля не должно превышать 0,15%-  [c.14]

Специальные элементы вводятся в сталь для придания ей определенных физико-механических свойств. К этим элементам относятся хром, никель, молибден, вольфрам, титан, кремний (при его содержании более 0,50/,), марганец при его содержании более 1%, медь, бор и др. Специальные элементы вводятся в сталь как в отдельности, так и в различных сочетаниях друг с другом, обусловливая тем самым получение необходимых физико-механических свойств. В зависимости от способа выплавки качественные легированные стали подразделяются на две группы 1) сталь качественную и 2) сталь высококачественную.  [c.167]


Многие материалы могут быть исследованы этим методом медь, сплавы на основе Си—N1, бронза, нержавеющие стали, цирконий, циркалой, вольфрам, молибден, свинец, бериллий и титан. Каждый вид дефектов может быть определен в соответствии с диаграммой, которая представлена на рнс. 10.57. Обычно калибровка инструмента на трубе, имеющей калибровочные дефекты, затруднена. Перегородки, поддерживающие конденсорные трубки, могут маскировать коррозию, имеющую место вблизи этих перегородок.  [c.620]

Каждая легированная сталь имеет свое обозначение, состоящее из букв и цифр. Буквы обозначают определенные химические элементы, содержащиеся в стали, а именно Г — марганец, С — кремний, X — хром, Н — никель, Д — медь, М — молибден. Ф — ванадий, Т — титан, Б — ниобий, Ю — алюминий, В — вольфрам, К — кобальт. Марки высококачественной стали имеют в конце обозначения букву А.  [c.10]

Склонность сталей к межкристаллитной коррозии зависит от химического состава, режимов термической обработки, длительности нагрева в определенном температурном интервале. Появление склонности стали к межкристаллитной коррозии связано с условиями выделения карбидов [89], [90], [91], [92]. Влияние малых содержаний углерода и азота в хромоникелевых сталях типа 18-8 и в стали 18-8 с молибденом соотношений титана и ниобия к углероду при различных режимах тер.мической обработки на склонность к межкристаллитной коррозии рассмотрено в работе [70], [75].  [c.654]

Быстрорежущие инструментальные стали отличаются от легированных присутствием в них значительно большего количества карбидообразующих элементов (вольфрам, ванадий, молибден и хром), существенно повышающих теплостойкость стали. Потеря твердости углеродистой инструментальной стали при нагреве выше 200—250 С объясняется интенсивной коагуляцией карбида железа, выделяющегося из мартенсита. Введение в сталь вольфрама, ванадия, молибдена и хрома в определенных количествах и сочетаниях приводит к образованию сложных карбидов, связывающих почти весь углерод, в результате чего процесс коагуляции карбидов начинает происходить при значительно более высоких температурах и теплостойкость стали возрастает. Главную роль в этом явлении играют вольфрам, ванадий и молибден. Высокая теплостойкость быстрорежущих сталей обеспечивается нагревом под закалку до максимально высоких температур (1300° С), охлаждением в масле и последующим троекратным отпуском при температурах 550—580° С. Высокие закалочные температуры  [c.15]

Таким образом, для определения возможности применения биметалла сталь-молибден для работы в различных агрессивных средах можно использовать данные о коррозионной стойкости молибдена, приведенные в гл. 5 и приложении 2.  [c.106]

Легированием хромоникелевых сталей молибденом, медью и марганцем удается в определенной степени повысить коррозионную стойкость сталей в неокисляющих средах, в том числе в растворах серной и соляной кислот и в средах, содержащих ионы хлора. Хромоникельмолибденовые стали применяются для изготовления аппаратуры, используемой в средах высокой агрессивности в горячих серной, сернистой и фосфорной кислотах, а также в кипящих растворах муравьиной, щавелевой и уксусной кислот.  [c.39]

В работе [1] приведены результаты исследований ряда аусте-нитных хромоникелевых сталей, легированных титаном, ниобием, алюминием, кремнием и молибденом в количестве 1,2—1,5 %. Химический состав сталей и средние значения скорости переноса масс представлены в табл. 17.1 и 17.2. Испытания по определению переноса масс проводили в течение 1000 ч в потоке жидкого натрия при 900 °С на входе в испытательный участок, 860 °С на выходе и массовом содержании кислорода (1—3)-10 %.  [c.262]

Применение таких труб открывает новые возможности по предотвращению протяженных вязких разрывов. Известно, что в магистральных газопроводах с монолитной стенкой труб при определенных соотношениях между динамической вязкостью материала и интенсивностью потока анергии, поступающей к вершине движущейся трещины, могут иметь место протяженные вязкие разрывы. В трубах из вязких сталей, полученных методом контролируемого проката и содержащих дефицитные добавки (молибден, ниобий и титан), такие разрушения наблюдались как в зарубежной практике, так и в нашей стране.  [c.30]

В заключение необходимо отметить,, что работа с алюминием при высоких температурах очень осложнена его высокой химической активностью. Такие обычно применяемые материалы, как железо, нержавеющая сталь, молибден и другие металлы, сильно взаимодействуют с алюминием и не могут быть использованы для изготовления тигля. Алюминий при определенных температурах ведет себя агрессивно и с обычными графитами.  [c.98]

Вторая группа элементов, таких как хром, молибден, вольфрам, ванадий, алюминий, кремний, понижает температуру точки и повышает температуру точки А , сужая область у-железа на диаграмме (рис. 5.2, б). Сплавы при определенном содержании легирующего элемента этой группы в интервале температур от комнатной до температуры плавления представляют собой твердый раствор легирующего элемента в а-железе и называются сталями ферритного класса.  [c.79]

При отпуске некоторых легированных сталей в определенном интервале температур наблюдается резкое снижение ударной вязкости, возникает отпускная хрупкость. Чтобы избежать развития отпускной хрупкости, изделия, изготовленные из хромоникелевых и марганцовистых сталей, после высокого отпуска быстро охлаждают в масле или воде. С этой же целью сталь легируют молибденом или вольфрамом (не более 0,6 %).  [c.201]

В России принята буквенно-цифровая система маркировки легированных сталей. Каждая марка стали содержит определенное сочетание букв и цифр. Легирующие элементы обозначаются буквами русского алфавита X — хром, Н — никель, В — вольфрам, М — молибден, Ф — ванадий, Т — титан, Ю — алюминий, Д — медь, Г — марганец, С — кремний, К — кобальт, Ц — цирконий, Р — бор, Б — ниобий. Буква А в середине марки стали показывает содержание азота, а в конце марки — то, что сталь высококачественная.  [c.281]


Непосредственно после прокатки (см. рис. 94) молибденовый и стальной слои резко различаются. Микротвердость молибдена около Н 350, стали — Я 200. Их разделяет тонкая черная прослойка — карбид (Мо, Ре)бС, и сталь на небольшую глубину обезуглерожена. После отжига при 700°С уже наблюдаются определенные изменения. Твердость пограничного слоя (а следовательно, и его прочность) возрастает до Н 450—500, взаимного проникновения молибдена в сталь и железа в молибден еще не обнаруживается, но карбидная прослойка утолщается от 1 (до отжига) до 2—3 мкм (после отжига).  [c.99]

Изучены также механические свойства и структура стали после ВТМО (8 — 35%, у р = 1м/с при 900° С). Физические причины, определяющие увеличение прочности при ВТМО, заключаются в повышении плотности дислокаций в мартенсите й дроблении его кристаллов йа отдельные фрагменты величиной в доли микрона с взаимной разорнентировкой до 10—15°. В стали формируется определенная субструктура полигонизации (рис. 8, г). Дислокационные границы такого типа отчетливо видны на электронных микрофотографиях. Фрагментация кристаллов мартенсита обнаруживается при сопоставлении электронограмм. У сталей, легированных элементами, вызывающими эффект вторичного твердения (ванадием, молибденом, вольфрамом), упрочнение может быть  [c.20]

Стилоскопирование производится в следующем порядке зачищаются электрод и изделие устанавливается зазор между электродом и изделием 1—3 мм и зажигается дуга отыскивается нужная группа линий и производится оценка содержания искомых элементов. Определение элементов проводится в следующей носледователь-ности ванадий, хром, молибден, никель, титан, вольфрам, марганец, ниобий, кобальт, кремний. Следует отметить, что содержание углерода, фосфора и серы спектральными методами не определяется. Точность определения содержания элементов при стилоскопировании зависит от выбранной пары спектральных линий и в общем случае составляет 20 % от абсолютной величины концентрации элемента в стали. Например, если содержание элемента оценено 1 %, то фактическое содержание может находиться в пределах 0,8—1,2 %. При проведении стилоскопирования сталей, близких по содержанию легирующих элементов и назначению, целесообразно пользоваться рекомендациями, приведенными в табл. 3.3.  [c.67]

При анализе результатов рентгенографического анализа окалин, образующихся на нержавеющих сталях, трудно выявить связь между скоростью коррозии и фазовым составом пленок. Тем не менее, по данным табл. 2, можно вполне определенно сказать, что тали, содержащие молибден, окисляются с меньшей скоростью (примерно на порядок), чем хромистые и хромоникелевые. Пленки, образующиеся на нержавеющих сталях, мало различаются по фазовому составу, однако на стали Х18Н9Т уже при 300° С образуется толстый рыхлый слой окалины, состоящей, по данным химического анализа, из фторидов железа с примесью фторидов хрома и никеля, не обнаруживаемых рентгенографическим анализом. В тех же условиях на стали Х18Н12МЗТ образуется тонкая прочно связанная с металлом пленка,. и скорость процесса окисления стали лимитируется скоростью диффузии компонентов через эту пленку, о чем свидетельствует параболический характер временной зависимости окисления стали. Рассмотренные выше стали различаются между собой лишь наличием в стали Х18Н12МЗТ 3% молибдена. Вероятно, он способствует формированию пленки, обладающей довольно высокими защитными свойствами.  [c.198]

Марка легированной стали включает в себя определенные буквы и цифры, сочетание которых зависит от химического состава стали. Входящие в маркировку буквы расшифровываются следующим образом Г — марганец, С — кремний, X — хром, Н — никель, М — молибден, Ю — алюминий, В—.вольфрам, Т — титан, Ф — ванадий, Б — ниобий, К — кобальт, Д — медь, Р — бор, А — азот. Цифры, входящие в марку, указывают на содержание конкретного элемента в стали. Двузначное число, стоящее в начале марки стали, указывает на среднее содержание углерода в сотых долях процента. Цифра, стоящая справа от букв, обозначающих элементы, показывает примерное содержание в процентах этого элемента. Например, марка стали 12Х2Н4 говорит о том, что сталь содержит до 0,12% углерода, около 2% хрома и около 4% никеля. При содержании легирующего элемента менее 1 % цифры после букв не ставятся, например сталь 20ХНМ содержит 0,15 — 0.25,% углерода, а хрома, никеля и молибдена — менее 1%.  [c.10]

Введение в высокохромистую сталь больших количеств аустениза-тороБ (никель, марганец), расширяющих температурную область аустенита, позволяет перевести сталь в устойчивое аустенитное структурное состояние. Такие сталп называются аустенитными. Подбирая определенные соотношения между количествами элементов ферритизаторов (хром, кремний, молибден, вольфрам, ниобий) и элементов аусте-низаторов (углерод, никель, марганец), можно получить двухфазные аустенитно-ферритные стали с различным процентным содержанием ферритной фазы в стали.  [c.490]

Как было показано в 15, пластическая деформация обусловливает рост зерна в твердом металле. По склонности к росту аустенитного зерна различают наследственно мелкозернистые и наследственно крупнозернистые стали. Главная причина различия в скорости роста ау-стенитных зерен состоит в загрязненности стали мельчайшими частицами нерастворимых окислов, которые вытесняются на границы растущих зерен и образуют труднопроницаемые для диффундирующих атомов оболочки. Обычно стали, раскисленные алюминием или легированные ванадие.м, титаном, молибденом, вольфрамом, являются наследственно мелкозернистыми. Поскольку от размера зерна аустенита зависят многие технологические и эксплуатационные свойства, особенно ударная вязкость, определение величины зерна стали является важной технологической пробой. Величину зерна определяют по специальной шкале, состоящей из 10 эталонов структуры, выявленной при увеличении 100. Число зерен на 1 мм п связано с номером эталона N зависимостью /2=2 + . Таким образом, когда обсуждают величину зерна в стали, то имеют в виду зерна аустенита. Для выявления зерен аустенита пользуются специальными приемами изучают поверхность излома, исследуют шлифы после вакуумного травления, намеренно  [c.162]

В промышленности применяют стали, легированные титаном, молибденом и другими элементами, образующими труднорастворимые карбиды, которые задерживают рост зерна аустенита до определенных температур (например, в сталях 18ХГТ, ЗОХГТ —до 1050—1100° С). В углеродистых сталях зерно аустенита увеличивается не только при высоких, но и при обычных температурах цементации. Заметной разницы в величине зерна при обычной и высокотемпературной цемен-гации нет. Рост зерна при высокотемпературной цементации не превышает  [c.125]

Отрицательное влияние этих элементов начинает сказываться с определенных концентраций их в стали, что связано с образованием ва поверхности нестойких окисных пленок или легкоплавких или летучих окислов. Так, молибден дает на поверхви-  [c.917]

Образованию а-фазы способствует повышение содержания хрома, легирование молибденом (Мо = 2...4 % содержится в некоторых сталях), присутствие б-феррита, предварительный наклеп стали. В сварных соединениях сталей типа 12Х18Н10Т а-фаза появляется после 10-50 ч выдержки в благоприятном для ее образования интервале температур, так как наплавленный металл содержит б-феррит, а в нем содержание хрома несколько выше его среднего содержания в стали. Охрупчивание стали под влиянием а-фазы проявляется, начиная с 10 % по объему. Для устранения охрупчивания рекомендуется стабилизирующий отжиг при 850-950 °С. Выдержка при температуре отжига сопровождается растворением а-фазы и одновременно повышает стойкость к МКК, так как устраняются неоднородности содержания хрома на границах зерен аустенита. Кроме того, в стабилизированных сталях вместо карбида хрома образуются карбиды МС, что увеличивает содержание хрома в аустените и в определенной мере повышает его коррозионную стойкость. Образование б-феррита в количестве более 15-20 % снижает технологичность сталей при горячей обработке давлением. Различия механических свойств Y- и б-фаз, температуры и скорости рекристаллизации и коэффициентов линейного расширения являются причиной появления разрьшов и горячих трещин, в особенности при высоких скоростях деформирования и больших деформациях. Количество б-феррита определяется соотношением между аустенитно- и ферритно-образующими элементами в аустените и температурой нагрева стали. Чтобы не допустить образования большого количества б-феррита, при обработке стали ограничивают температуру нагрева с учетом уже имеющегося б-феррита.  [c.241]


Причинами снижения ударной вязкости ферритных сталей являются образование а-фазы и появление 475 °С-хрупкости при температуре соответственно 550-800 °С и 450-540 С. Скорости развития этих процессов максимальны при определенных температурах, зависящих от химического состава сталей (рис. 1.3.22). Чем больше хрома содержит сталь, тем быстрее и в большем количестве образуется о-фаза. В сталях с Сг = 17 % для начала ее образования при 660 °С необходима вьщержка около 150 ч, а в сталях с Сг = 25 % - 15 ч при 650 °С. Дополнительное легирование ферритных сгалей молибденом (2-4 %) для повышения стойкости по отношению к точечной коррозии ускоряет образование о-фазы и других хрупких фаз.  [c.247]

Для стали Х15Н5Д2Т с молибденом в плоских образцах шириной 35 мм для оценки К с по сравнению с образцами сечением 10X11 мм для определения ату в центре образца под усталостной трещиной наблюдался менее пластичный ямочный рельеф, при этом относительная доля боковых скосов значительно меньше. Снижение локальной пластичности было меньше в состоянии коагуляционного старения, когда материал обладает высокой способностью к торможению разрушения в условиях сосредоточенной деформации (/=525°С, ав=1,34 ГН/м , 00.2=1,21 ГН/м2, Л ,с= 151,6 MH/mV., аху=0,59 МДж/м ), чем в состоянии фазового старения (/=425 С, ав=1,31 ГН/м , оо,2 = = 1,08 ГН/м2, / ie=120 МН/м =, ату=0,47 МДж/м ) (рис. 2).  [c.10]

Более 75% молибдена применяют для легирования сталей, используемых в авиа- и автомобилестроении, при изготовлении лопаток турбин и др. Весьма перспективны жаропрочные (для реактивных двигателей) и кислотоупорные (аппараты химической промышшенности) сплавы так, сплав Fe — Ni — Мо стоек по отношению ко всем кислотам (кроме Hf) до 100°С. Молибден — важнейший конструкционный материал в производстве нитей для электрических ламп и катодов для электровакуумных приборов. Его используют в гальванопластике (молибденирова-ниё), а также в аналитической химии для определения фосфора, мышьяка, кремния, германия и некоторых других элементов.  [c.199]

Карбидная фаза в легированной стали. Элементы-карбидообра-зователи — титан, ванадий, хром, марганец, цирконий, ниобий, молибден и вольфрам — сосредоточены в определенном месте периодической таблицы Менделеева, занимая группы IV, V, VI, VH и ряды 4, 6, 8 и 10.  [c.307]

В работе В. В. Андреевой и Т. П. Степановой [67] изучено влияние анодной и катодной поляризации на рост и разрушение пассивных пленок на нержавеющей стали и ее компонентах — хроме, никеле, молибдене — оптическим поляризационпым мето-дом определения толщины тонких поверхностных пленок.  [c.37]

Удалось установить [74] определенную связь между составом пленки и ее защитными свойствами. Указанные выше стали подвергали коррозионным испытаниям в 10%-ном растворе РеВгд при 25° С в течение 150 час. Соответствующие данные о составе пассивных пленок после испытаний и скорости коррозии приведены на рис. 25. Можно отметить интересные изменения в составе иленки примерно 25% Si в пассивной пленке в процессе коррозионных испытаний заменяются Мо. В результате создается поверхность, обладающая высокими защитными свойствами. Наибольшее повышение содержания кремния в нленке и наибольшая скорость обогащения пленок молибденом в процессе коррозии наблюдаются у сплавов, содержащих 1—2% Si, и это количество кремния будет самым эффективным. Дальнейшее повышение содержания Si оказывает значительно меньшее влияние на улучшение коррозионной стойкости сплава, что подтверждается коррозионными данными. Состав пленки для сплава с 2% Si после  [c.40]

В процессе изготовления аппаратуры и оборудования из коррозионностойких сталей, вследс -вие неправильной термической обработки или при сварке могут возникнуть условия, вызывающие межкристаллитную коррозию. По современным представлениям преимущественное разрушение границ зерен обусловлено электрохимической неоднородностью поверхности, возникающей в определенном для данного сплава интервале температур в результате структурных превращений. Например, при нагреве хромоникелевых сталей при 600—800 °С происходит выделение из твердого раствора сложных карбидов, содержащих хром, железо и никель. Эти карбиды выпадают преимущественно по границам зерец, что приводит к обеднению отдельных участков сплава хромом. Наиболее сильное обеднение наблюдается в зоне, непосредственно прилегающей к границе рерна. Имеются и другие факторы, способствующие межкристаллитной коррозии. Например, для коррозионностойких сталей, содержащих молибден, большое значение приобретает выделение о-фазы, также способствующей обеднению хромом прилегающих к границам участков. Перераспределение хрома в коррозионностойких сталях возможно и в результате выпадения высокохромистого феррита — продукта распада аустенита, что вызывает межкристаллитную коррозию, например, сварных швов. Существует мнение, что на склонность к межкристаллитной коррозии влияют также и внутренние напряжения.  [c.55]

Каждый из легирующих элементов вносит определенный вклад в характеристики сталей. Например, никель увеличивает прокаливаемость стали и интенсивно снижает температуру перехода в хрупкое состояние. Хром увеличивает прокаливаемость. При концентрации хрома 13 % и более сталь становится коррозионно-стойкой (нержавеющей). Ванаоий и ттш являются сильными измельчителями зерна Молибден и вольфрам предотвращают развитие отпускной хрупкости и т.д.  [c.94]

После первого цикла на поверхности сплава возникало определенное число устойчиво работающих питтингов (Л 1 = 40). Казалось, что во втором цикле при включении анодного тока должны в первую очередь развиваться уже имеющиеся питтинги. Но это не так. Сразу же после выключения тока они запассивировались и перестали функционировать. Во втором цикле возникли совершенно новые питтинги (Л 2 = 84), а в третьем их стало уже 130. Активировать вновь ранее работавшие питтинги оказалось гораздо труднее, чем создать новые. Потенциал питтин-гообразования выявляется по первому скачку потенциала в отрицательную сторону на кривой заряжения. Эти потенциалы довольно хорошо совпадают с потенциалами питтингообразования, определенными потен-циостатическим методом (табл. 49). По мере перехода к более легированным сплавам, в особенности молибденом и кремнием, потенциалы  [c.289]


Смотреть страницы где упоминается термин Молибден Определение в стали : [c.705]    [c.61]    [c.99]    [c.50]    [c.81]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.93 , c.102 ]



ПОИСК



Молибден

Молибден Определение в стали весовое

Молибден в стали

Молибденит



© 2025 Mash-xxl.info Реклама на сайте