Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конструкция постоянного тока

Борьба с коррозией с помощью наложения на металлическую конструкцию постоянного тока недостаточно внедрена в теплоэнергетику. Вместе с тем ощущается немалая потребность в использовании этого метода. Так, имеется перспектива для широкого внедрения катодной защиты стальных баков, которые являются непременным элементом почти любой тепловой схемы, и анодной — для предупреждения коррозии оборудования, контактирующего с кислотами в схемах обессоливания и Н — Ыа-катио-нирования (баков для хранения серной кислоты, эжекторов для дозирования и трубопроводов для подачи серной кислоты). Большой арсенал средств, применяемых для защиты металла от коррозии теплоэнергетического оборудования, обусловлен разнообразием как рабочих сред, так и видов металла, а также условий его службы. В связи с этим приобретают существенное значение профилактический характер противокоррозионной защиты и контроль за ее осуществлением.  [c.296]


Рис. 257. Электрическая схема катодной защиты ЯГ — источник постоянного тока — катодная поляризуемость защищаемой конструкции анодная поляризуемость вспомогательного анода сопротивления npi пра — сопротивление соединительных проводов — то же, защищаемой конструкции — то же, защитного изолирующего покрытия — то же, электролита между защищаемой конструкцией и вспомогательным анодом — то же, вспомогательно-Цф а Рис. 257. <a href="/info/4765">Электрическая схема</a> <a href="/info/6573">катодной защиты</a> ЯГ — <a href="/info/578855">источник постоянного тока</a> — катодная поляризуемость защищаемой конструкции анодная поляризуемость вспомогательного анода сопротивления npi пра — сопротивление <a href="/info/305462">соединительных проводов</a> — то же, защищаемой конструкции — то же, защитного изолирующего покрытия — то же, электролита между защищаемой конструкцией и вспомогательным анодом — то же, вспомогательно-Цф а
Расчет анодной защиты при помощи внешнего источника тока сводится к определению параметров источника постоянного тока для двух режимов его работы 1) при анодной пассивации защищаемой конструкции 2) при поддержании пассивного состояния конструкции.  [c.365]

Электрический ток, протекающий через электролит, в котором находится металлическая конструкция (например, в морской воде или во влажном грунте), влияет на скорость и характер распределения коррозионного разрушения, так как он попадает на металлическую конструкцию и затем стекает в электролит. Если электрический ток постоянный, то участки металла, где положительные заряды (катионы) выходят в электролит, являются анодами (см. рис. 132, к) и подвергаются электрокоррозии — дополнительному растворению, пропорциональному этому току. Участки, где положительные заряды переходят из электролита в металл, являются катодами, на которых протекает катодный процесс, что в какой-то степени снижает скорость их коррозионного разрушения. Примером электрокоррозии металлов может служить местное коррозионное разрушение подземных стальных трубопроводов блуждающими постоянными токами, возникновение и механизм действия которых схематически показаны на рис. 260.  [c.367]

Схема возникновения и механизма действия блуждающих токов была приведена на рис. 260. Блуждающие токи обусловлены утечками тягового тока с рельсов электротранспорта, работающего на постоянном токе. Почва является при этом шунтирующим проводником и в зависимости от величины электросопротивления рельсов и грунта ток, иногда весьма значительной силы (до десятков и сотен ампер) проходит по земле. Встречая на своем пути подземное металлическое сооружение (например, трубопровод или кабель) ток входит в него (в этой зоне имеет место катодный процесс, который приводит к подщелачиванию грунта, а иногда и выделению водорода) и течет по нему, пока не встретятся благоприятные условия его возвращения на рельсы. В месте стенания тока с сооружения происходит усиленное анодное растворение металла, прямо пропорциональное величине тока. Блуждающие токи имеют радиус действия до десятков километров в сторону от токонесущих конструкций, например, рельсовых путей.  [c.390]


Электрохимическая защита основана на поляризации постоянным током металлических конструкций, находящихся в коррозионной среде.  [c.60]

Нйя й поэтому МОЖНО ввести поправку [43]. Долговременный дрейф яркостных температур ниже 1500 °С незначителен, но он возрастает примерно до 0,02 °С за 100 ч при 1600 °С, 0,08 °С при 1700 °С и 0,15°С при 1770 °С. Эти величины типичны для вольфрамовых ленточных ламп, так что температура выражается как функция только величины постоянного тока. Это вполне адекватный метод. Он устраняет трудности проведения точных измерений напряжения на вводах при наличии температурных градиентов. Для конструкции лампы, показанной на рис. 7.19, соотношение ток/температура может быть выражено полиномом четвертой степени для вакуумных ламп в области от 1064 до 1700 °С, а для газонаполненных ламп — в области от 1300 до 2200 °С. Для ламп конкретной конструкции коэффициенты полиномов варьируются слабо, что обеспечивает удобный контроль в процессе градуировки [1,26].  [c.359]

В зависимости от условий применения могут использоваться различные по мощности, конструктивному исполнению и принципу действия катодные станции. Конструкция станций в основном определяется типом источника постоянного тока, их мощностью и месторасположением.  [c.37]

На основании прочностных расчетов производится подбор конструкции, типа и размеров подшипников. Кроме того, прочностным расчетам подвергаются явно выраженные полюсы синхронных машин, главные и добавочные полюсы машин постоянного тока, коллекторы, контактные кольца, нажимные шайбы, пальцы, крепежные детали сердечников, бандажные кольца, станины, пазовые клинья, стержни и кольца короткозамкнутых обмоток.  [c.187]

Информационное обеспечение. Разработка электронных устройств на типовых и унифицированных каркасах относится к многовариантному конструированию путем компоновки из стандартных, типовых и унифицированных изделий и может выполняться автоматизированно. Примером таких устройств является электронный блок — конструкция, предназначенная для выполнения самостоятельной функции (блок питания, блок усилителя постоянного тока, блок преобразователя и пр.).  [c.87]

Конструкция малых выключателей представляет собой термоэлемент, который опрокидывает токосъемник при перегреве током перегрузки магнит, ускоряющий процесс отключения и пару контактов. Контакты не должны свариваться при токах перегрузки. Кроме того, при токе короткого замыкания материал контакта не должен подвергаться эрозии. При прохождении через контакты постоянного тока необходимо создавать условия минимального перегрева контактов. Контакты должны быть дешевыми и легко прикрепляться, несмотря на большие их размеры. По своим служебным свойствам они должны превосходить другие материалы. В приборах с низкими номинальными токами (50 А) и ниже используются контакты, состоящие из 65% вольфрама и 35% серебра или 50% серебра и 50% молибдена (приблизительно с 50 об. % тугоплавкого металла они показаны на рис. 3). В выключателях с большими номиналами материалы контактов содержат больше серебра (до 65 об. %) для лучшего размыкания и улучшения свойств при повышении температуры.  [c.423]

При сравнительно больших плотностях защитного тока и большой его суммарной величине едва ли мол но избежать значительных падений напряжения в грунте как на анодных заземлителях, так и на катодных поверхностях, так что соседние сооружения, не включенные в систему катодной защиты, могут подвергнуться неблагоприятному воздействию [7]. В таком случае на всех посторонних сооружениях, в особенности находящихся в зоне действия станций катодной защиты с большим током, необходимо провести измерения и при необходимости предупредительные мероприятия, например подключить их к системе катодной защиты через омические сопротивления. При сравнительно большом защитном токе подводить его во избежание вредного влияния блуждающ,их токов следует не в непосредственной близости от строительных сооружений, имеющих стальную арматуру поблизости от железобетонных сооружений тоже следует избегать слишком большой плотности защитного тока. Если некоторая часть постоянного тока, отводимого в землю, попадет в арматуру строительной конструкции, то  [c.271]


Электродвигатель постоянного тока из-за сложности его изготовления, обслуживания и дороговизны не мог быть универсальным в техническом перевооружении промышленности. Эту роль выполнил электродвигатель трехфазного переменного тока в асинхронном исполнении как приводной механизм он не имеет себе равных благодаря простоте конструкции, дешевизне, надежности и высокому к. п. д.  [c.11]

В процессе развития электропривода происходило его совершенствование и модернизация. Как уже указывалось, почти во всех производственных силовых процессах электропривод должен обеспечивать переменную частоту вращения, а в некоторых — реверсивность движения. Этому требованию отвечают электродвигатели постоянного тока. Электродвигатели переменного тока, не обладая этим качеством, имеют большое преимущество по простоте конструкции, дешевизне и, что самое главное, потребляют переменный ток от общих электросетей.  [c.14]

Скоро стало ясным, что электродвигатель постоянного тока из-за сложности его изготовления, обслуживания и дороговизны не мог быть универсальным в техническом перевооружении промышленности. Эту роль выполнил электродвигатель трехфазного переменного тока. По простоте своей конструкции и легкости обслуживания этот электродвигатель как приводной механизм не имел себе равных. Вместе с тем электродвигатель переменного тока был надежен и обладал высоким КПД.  [c.24]

Если приборы группы 1 в большей степени являются исследовательскими, то группы 2 предназначены для индивидуального контроля вибрационного воздействия. Так как задача приборов этой группы заключается в определении дозы и эквивалентного вибрационного параметра, конструкция их может быть значительно упрощена. На рис. 4 приведена блок-схема прибора группы 2 — дозиметра. Принцип действия прибора такой же, как у прибора группы 1. Скорректированный по частоте в БКФ и усиленный в Vi сигнал поступает на детектор GLR и блок 1, отдающий сигнал постоянного тока, мгновенные амплитуды которого пропорциональны возведенным в квадрат амплитудам воспринимаемого пьезоэлектрическим датчиком В А ускорения. Чтобы обеспечить широкий рабочий динамический диапазон, детектор прибора сконструирован в виде логарифмического квадратичного детектора. Буферный уси-  [c.30]

Более широкое практическое применение нашла катодная защита металлических конструкций. Защищаемый металл при этом или присоединяется к отрицательному полюсу источника постоянного тока, или контактируется с металлом, имеющим более отрицательный потенциал (протекторная защита).  [c.9]

На фиг. 34 представлен еще один тормоз этого типа, в котором замыкающая пружина установлена внутри электромагнита постоянного тока, а все регулирование осуществляется с помощью одной гайки. В конструкции его также предусмотрено устройство для автоматического выравнивания отхода колодок при неравномерном износе накладок. Конструкция тормоза обеспечивает нормальную работу в горизонтальном и вертикальном положениях. Тормоза этого типа имеют минимальное количество шарниров, быстро срабатывают и легко регулируются. По габаритам эти тормоза меньше тормозов первой и второй групп. Недостатками их являются большой вес и сложная конфигурация литых стальных рычагов.  [c.54]

На фиг. 97, б показана конструкция комбинированного управ-ляемого тормоза для тяжелых кранов с электромагнитом постоянного тока. Рычаги тормоза расположены горизонтально и имеют оси вращения на вертикальной стойке станины. При обесточенном электромагните 2 тормоз замкнут действием пружины 1, установленной в центре электромагнита. При включении тока сердечник электромагнита притягивается к якорю 3, прикрепленному к станине. При этом шток 4 перемещается вправо, освобождая угловой рычаг 5, а рычаги 6 и 9 расходятся под действием размыкающей пружины 7 и тормоз размыкается, причем нижний рычаг 9 опускается до упора 10. При приложении усилия к педали гидравлической системы развивается давление в поршневом цилиндре 11 и поршень поднимается вверх, поворачивая угловой рычаг 5, верхний конец которого свободно перемещается по штоку 4. Тогда шток 8 размыкающей пружины 7, шарнирно присоединен- ный к рычагу 5 и свободно проходящий через хвостовое отверстие тормозного рычага 6, также начинает подниматься вверх и подтягивает нижний рычаг 9 (рычаг 6 при этом опускается вниз). Таким образом, рычаги сближаются и тормозные колодки захватывают шкив, производя торможение. Размыкающая пружина 7 при этом сжимается, а при снятии нагрузки с педали разжимается, разводя тормозные рычаги. При гидравлическом управлении замыкающая пружина 1 в процессе торможения дополнительному сжатию не подвергается, так как угловой рычаг 5 имеет возможность свободно перемещаться по штоку 4. Сжимается только пружина 7, развивающая значительно меньшее усилие, чем пружина 1 (усилия пружины 7 хватает только для разведения тормозных рычагов). Горизонтальное расположение рычагов является не вполне удачным, так как при этом не обеспечивается одновременный отход колодок от шкива отход верхнего тормозного рычага начинается после того, как рычаг 9 соприкоснется с упором 10.  [c.153]

Эффект растет с ростом Як и уменьшается с ростом металла Полное подавление работы микро-нар достигается при V = (Ул1е)обр. что возможно при катодной поляризации металла как от внешнего источника постоянного тока, так и при помощи анодного протектора, при этом обычно (/к)онешн>/о Эффект имеет большое практическое значение и используется для уменьшения или полного прекра-ш,ения электрохимической коррозии защищаемой конструкции с переносом растворения на менее ценную конструкцию (протектор или дополнительный анод)  [c.296]

Некоторое затруднение в применении анодной электрохимической защиты — потребность в большом токе для пассивации конструкции — может быть устранено а) постепенным заполнением конструкции раствором под током б) предварительной пассивацией защищаемой поверхности пассивирующими растворами (например, 60% HNOg -f 10% К3СГ2О7) в) применением импульсных источников постоянного тока. Следует также поддерживать потенциал защищаемой конструкции в области оптимальных его значений, чтобы избежать возможного протекания некоторых видов местной коррозии (точечной, межкристаллитной и избирательной коррозии под напряжением). Слабым местом этого вида защиты является недейственность его выше ватерлинии, а иногда и недостаточность по ватерлинии, что требует иногда дополнения его другими методами защиты, в частности использованием для  [c.321]


Во всех термометрических мостах переменного тока очень важную роль играет конструкция соединительных проводов. В мостах Куткоски и Найта используется по два коаксиальных кабеля на каждый резистор, а в мосте Томпсона и Смолла — по четыре. Это требует переделки головок стержневых термометров и очень трудно осуществляется в криогенных установках. Самые неприятные проблемы возникают в связи с взаимными наводками между потенциальными и токовыми проводниками, и именно для их устранения приходится использовать сложные системы коаксиальных кабелей. Если же коаксиальными кабелями не удается воспользоваться, то необходимо скручивать подводящие провода попарно —токовый с токовым, потенциальный с потенциальным. Это уменьщает не только взаимные наводки, но и наводки от внещних полей и поэтому целесообразно также при использовании мостов постоянного тока. При измерениях на переменном токе жела-  [c.259]

Блуждающими токами называют токи утечки из электрических цепей или любые токи, попадающие в землю от внешних источников. Попадая в металлические конструкции, они вызывают коррозию в местах выхода из металла в почву или воду. Обычно природные токи в земле не опасны в коррозионном отношении — они слишком малы и действуют кратковременно. Переменный ток вызывает меньшие разрушения, чем постоянный, а токи высокой частоты обусловливают большие разрушения, чем токи низкой частоты. По данным Джонса [1], возрастание коррозии углеродистой стали в 0,1 н. Na l, вызванное токами частотой 60 Гц и плотностью 300 А/м, незначительно, если раствор аэрирован, и в несколько раз выше (хотя и относительно низкое) в деаэрированном растворе. Возможно, в аэрированном растворе скорости обратимых или частично обратимых анодной и катодной реакций симметричны по отношению к наложенному переменному потенциалу, а в деаэрированном они несимметричны, главным образом вследствие реакции выделения водорода. Подсчитано, что коррозия стали, свинца или меди в распространенных коррозионных средах под действием переменного тока частотой 60 Гц не превышает 1 % от разрушений, вызванных постоянным током той же силы [2, 3].  [c.209]

Электрохимическая защита металлов от коррозии основана на уменьшении скорости коррозии металлических конструкций вутём их катодной и анодной поляризации. Наиболее распространена так называемая катодная защита металла, которая мсшет осуществляться присоединением защищаемой металлической конструкции к отрицательному полюсу внешнего источника постоянного тока или к металлу, имеющему более отрицательный потенциал (протекторная. защита).  [c.36]

Соотношение (3.29) характеризует жестку статора и вращения ротора, а соотношение ротора, которые должны быть или постоянный ми двойной частоты вращения. Все это спран так называемого синхронного принципа пре который используется в синхронных машинах шинах постоянного тока. Поэтому именно эти полняются в виде явнополюсных конструкций  [c.65]

Омагничивание агрессивных растворов проводили на установке простой конструкции, схема которой представлена на рис. 45. От источника УИП-1 подавали постоянный ток силой до 600 мА на однополюсный магнит. Напряженность магнитного поля увеличивалась до 80 х X Ю А/м. Жидкость при помощи центробежного насоса постоянной производительности циркулировала по стеклянной трубке, установленной перпендикулярно к силовым линиям магнитного поля. Для изменения скорости потока использовали трубки различного диаметра. Время пребывания сероводородсодержащего раствора в магнитном поле составляло 0,1 с при общем времени омагничивания 30 мин. В растворе содержалось 2500-2700 мг/п H S. Диффузию водорода через мембрану из стали марки 12Х1МФ определяли электрохимически по спаду потенциала запассивированной стороны мембраны.  [c.191]

Экспериментальные данные для существующих конструкций электродвигателей постоянного тока показывают, что величина производной dMjdff может считаться приближенно постоянной. Постоянную величину dM/dtf обозначим через К. Тогда движущий момент  [c.285]

Работал в Энергетическом институте АН СССР, руководя лабораторией электромеха ники. Предложил новые схемы асинхронных двигателей с улучшенными пусковыми характеристиками, новые конструкции электрических машин, способы улучшения коммутации машин постоянного тока и пр. Автор учебников по машинам постоянного тока, асинхронным двигателям и коллекторным машинам.  [c.115]

Основой их развития послужил метадин — электромашинный усилитель с поперечным полем, предложенный еще в 1929 г. К. И. Шенфером. Метадин представлял собой машину постоянного тока специальной конструкции с двойным комплектом щеток и особым устройством магнитной цепи он обеспечивал возможность плавного регулирования скорости [8].  [c.116]

Polak losef. Способ устранения или уменьшения действия блуждающих токов в металлических конструкциях при воздействии поля постоянного тока и установка для его осуществления. Авторское свидетельство ЧССР № 182743, РЖ № 3, К258П, 1981.  [c.85]

Источники блуждающих токов промышленных объектов шино-проводы постоянного тока, электролизеры, металлические трубопроводы, присоединенные к электролизерам, — должны быть электрически изолированы от строительных конструкций. В качестве изоляторов следует использовать базальт, фарфор, диабаз, стекло, пластические массы и другие материалы с удельным сопротивлением не менее 10 —10 ом-см. Применение пористых материалов, обладающих способностью впитывать влагу (бетона, неглазурованного фарфора, керамики), без специальной обработки водоотталкивающими и электроизолирующими составами не допускается.  [c.43]

Этот вид коррозии наблюдается в подземных конструкциях или под водой и вызывается блуждающими токами от электрического оборудования, некоторые токопроводящие части которого контактируют с почвой или водой. На железе и стали коррозия блуждающим током обычно вызывается только источниками постоянного тока высокого напряжения. Такими источниками могут стать, например трамваи или поезда метро, работающие на постоянном токе, линии электропередачи постоянного тока или сварочные аппараты постоянного тока. Напротив, поезда, работающие на пералеяяом токе, обычно не вызывают коррозии блуждающим током.  [c.41]

Станция катодной защиты — это устройство для катодной поляризации защищаемых конструкций с помощью внешнего тока. Они представляют собой комплекс, состоящий из источника постоянного тока с двумя основными линиями для поляризации анодов и для катодной защиты конструкции. Линии контроля потенциалов и защитного заземления являются вспомогательными. К станции относятся также электроизмерительные приборы, защита от атмосферного электричества, автоматическое регулирование разности потенциалов конструкция — земля в местах дренажа, телеконтроль, защита от попадания под напряжение обслуживающего персонала, приборы для измерения скорости коррозии и др.  [c.67]

На фиг. 39, а представлен общий вид тормозов этой группы, /разработанных ВНЙИПТМАШем, с короткоходовым колодочным электромагнитом типа МОБ для переменного тока, а на фиг. 39, б — с короткоходовым плунжерным электромагнитом типа МП для постоянного тока (характеристики их приведены в табл. 16 и 17). Конструкция тормозов ВНИИПТМАШа показана на фиг. 40. Эти тормоза широко применяются в подъемно-транспортных машинах они отличаются тем, что электромагниты в них расположены 60  [c.60]


Регулирование величины установочной осадки пружины 6 при полностью собранном тормозе производится вращением шестерни 4, соединенной с зубчатым колесом-гайкой 18, навернутой на упорную втулку 19. Это вращение приводит к осевому перемещению втулки 19, соединенной скользящей шпонкой с корпусом 3. Положение втулки 19, а следовательно, и величина осадки пружины 6, контролируется также по положению штифта 7. При электродвигателях, имеющих нормальный цилиндрический ротор, тормозные устройства снабжаются дисковым или коническим тормозом, встроенным в электродвигатель и имеющим привод от электромагнитов переменного или постоянного тока. Конструкция встроенного дискового тормоза, в которой использованы электромагниты постоянного тока, представлена на фиг. 151. Катушка электромагнита 4, расположенная в специальном корпусе 5, прикреплена к лобовому щиту электродвигателя 6. Якорь 10 электромагнита, являющийся одновременно тормозным диском, обшитый с наружной стороны фрикционным материалом 7, прижимается усилием сжатой пружины 1 к неподвижной поверхности трения на крышке 8. Чтобы уменьшить трение при осевом перемещении диска-якоря 10, он насаживается ие непосредственно на вал двигателя 2, а соединяется с валом при помощи зубчатого соединения 12. При этом замыкающая пружина 1 вращается вместе с диском 10 и ее осевое усилие передается на корпус двигателя через упорный подшипник 3. При включении тока в катушку электромагнита якорь притягивается к катушке и тормоз размыкается. Данная конструкция снабжена дополнительным ручным приводом и устройством для ручного размыкания тормоза. Для этой цели необходимо повернуть ручку 9, и гайка 13 ввернется в крышку корпуса 8, а шестерня 11 нажмет торцом на диск 10. При этом пружина 1 сжимается, трущиеся поверхности размыкаются, а зубья, расположенные на торцовой поверхности шестерни 11, сцепляются с зубьями на торцовой поверхности диска 10. Тогда поворотом колеса 14 можно произвести ручной подъем или опускание груза в грузоподъемных машинах, ручное перемещение суппорта станка или перемещение изделия и т. п.  [c.241]


Смотреть страницы где упоминается термин Конструкция постоянного тока : [c.152]    [c.329]    [c.189]    [c.192]    [c.248]    [c.364]    [c.196]    [c.298]    [c.299]    [c.208]    [c.294]    [c.308]    [c.236]    [c.100]    [c.28]   
Справочник авиационного техника по электрооборудованию (1970) -- [ c.15 , c.82 ]



ПОИСК



Конструкция тяговых двигателей постоянного тока

Конструкция тяговых электрических машин Генераторы постоянного тока

Особенности конструкции крановых электродвигателей постоянного тока

Особенности конструкции машин постоянного тока

Электродвигатель тяговый постоянного тока: конструкция 40—42 параметры 41 схема обмотки

Электродвигатель тяговый постоянного тока: конструкция 40—42 параметры 41 схема обмотки якоря 43 схема соединения обмоток 43 характеристики

для постоянного тока



© 2025 Mash-xxl.info Реклама на сайте