Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термическая обработка аустенита при нагреве

Свойства аустенитно-ферритных сталей зависят от соотношения количества феррита и аустенита (при нагреве до температур термической обработки). Если больше феррита в структуре, то сталь при нагреве выше 850° С обладает большими крупнозернистостью и хрупкостью (не устраняющимися последующей термической обработкой) и пониженной коррозионной стойкостью. Горячую механическую обработку полуферритных сталей следует заканчивать при наиболее низких температурах для получения мелкозернистости, поскольку  [c.267]


При многих видах термической обработки сталь нагревают до температур, соответствующих существованию аустенита (процесс аустенитизации). Образование аустенита при нагреве является диффузионным процессом и подчиняется основным положениям теории кристаллизации.  [c.156]

Содержание легирующих элементов в стали, предназначенной для изготовления деталей, упрочняемых цементацией (нитроцементацией), так же как и улучшаемых, не должно быть слишком высоким, но должно обеспечивать требуемую прокаливаемость поверхностного слоя и сердцевины и тормозить рост зерна аустенита при нагреве. Легирование должно обеспечить возможность применения наиболее экономичного и технически выгодного метода термической обработки — непосредственной закалки из цементационной (нитроцементационной) печи.  [c.339]

Термическую обработку, заключающуюся в нагреве закаленной стали ниже температуры точки Ас[ и обеспечивающую превращения мартенсита и остаточного аустенита, называют отпуском. Отпуск при температуре до 250° G незначительно изменяет твердость, но повышает сопротивление разрыву и изгибу. Отпуск при температурах выше 250° С заметно снижает твердость, предел прочности и предел текучести и повышает относительное удлинение.  [c.158]

Если при термической обработке стали в печи температура нагрева обычно превышает точку Асз не более чем на 100— 150 град, то при сварке максимальные температуры нагрева околошовной зоны близки к температуре плавления. Скорости нагрева при сварке в десятки и сотни раз выше, чем при печной термической обработке. Поэтому при сварке интенсивно растет зерно аустенита, а степень его гомогенизации, как правило, невысока. Это существенно сказывается на устойчивости аустенита при охлаждении металла и температурных интервалах его превращения.  [c.15]

Рост зерна аустенита при нагреве стали оказывает большое влияние как на результаты закалки, так и на механические и физико-химические свойства стали. Сталь с крупным зерном имеет пониженный предел прочности, более низкую ударную вязкость и большую склонность к образованию трещин, т. е. механические свойства крупнозернистой стали значительно хуже, чем мелкозернистой. При термической обработке всегда стремятся к тому, чтобы получить мелкое зерно стали.  [c.126]

Существует несколько способов фиксации величины зерна аустенита при нагреве до 930°, основанных на проведении в лабораторных условиях стандартной термической или химико-термической обработки, выбор которой зависит главным образом от состава испытуемой стали. ГОСТ 5639—51 предусматривает два основных метода выявления аустенитного зерна 1) метод пробной цементации верно в стали по этому методу выявляется по  [c.113]


Свойства стали после индукционной закалки. Результаты индукционной закалки зависят от выбора марки стали, режимов предварительной термической обработки, режимов индукционного нагрева, охлаждения и низкого отпуска. По сравнению с обычной закалкой индукционная закалка придает стали более высокую твердость (на HR 1—2) и прочность при относительно меньшем понижении вязкости, а также более высокий предел выносливости. Эти преимущества обусловлены измельчением зерен аустенита. С увеличением скорости нагрева (с повышением степени пере-нагрева) резко возрастает число центров перлито-аустенитного превращения. Поэтому образуется очень мелкое начальное зерно аустенита (из-за отсутствия выдержки при температуре закалки роста зерна не происходит). Измельчение зерна аустенита приводит к уменьшению размеров кристаллов мартенсита. При индукционном нагреве можно получить зерно аустенита 12—15-го балла (при нагреве в печах — 7—10-й балл). Для получения мелкого зерна аустенита при индукционной закалке необходимо применять стали, мало склонные к росту зерна аустенита, а также подвергать закалке детали с мелкодисперсной исходной структурой.  [c.92]

Закалка — основная операция термической обработки инструмента, которая определяет (вместе с отпуском) его стойкость в процессе эксплуатации. Твердость после закалки должна быть HR 62—65, структура — мартенсит скрытокристаллического или мелкоигольчатого строения (наличие игольчатого мартенсита допустимо для резцов некоторых типов) и равномерно распределенные карбиды. Величина зерна аустенита при нагреве под закалку должна соответствовать 10—lL-му баллу и в отдельных случаях 9-му баллу (при увеличении 400 или 500). Состав мартенсита определяется химическим составом стали и условиями закалки. Содержание углерода в мартенсите углеродистой стали составляет 0,7—0,8%, в быстрорежущей 0,3—0,5%. Теплостойкость углеродистой и легированной сталей должна быть не ниже 200—250° С, а быстрорежущей — 600—650° С. Прочность инструмента зависит от характера распределения карбидов, количества остаточного аустенита и величины напряжений, возникающих в процессе закалки.  [c.260]

Применяют два метода закалки измерительных инструментов. Первый метод предусматривает получение устойчивого остаточного аустенита, который не распадается с течением времени, чем и достигается стабильность размеров. Количество остаточного аустенита и интенсивность его распада в большой мере зависят от режима термической обработки. Несоблюдение температуры нагрева и температуры закалочного масла при закалке хромистой стали вызывает нестабильность размеров измерительных инструментов.  [c.143]

При многих видах термической обработки сталь нагревают до температур, соответствующих существованию Аустенита (процесс аустенизации, см. рис. 1.51). Образование аустенита при нагреве -диффузионный процесс, он подчиняется основным положениям теории зародышеобразования. При нагреве стали выше температуры А  [c.112]

Существует несколько способов фиксации величины зерна аустенита при нагреве до 930° С, основанных на проведении в лабораторных условиях стандартной термической или химико-термической обработки, выбор которой зависит главным образом от состава испытуемой стали (ГОСТ 5639-51).  [c.226]

Для предотвращения этого явления применяют режим термической обработки, заключающийся в нагреве при 1150-1200 °С, при котором карбонитриды титана растворяются в аустените, с последующим быстрым охлаждением (в воде), что позволяет предотвратить их повторное выделение. Однако после такой обработки резко увеличивается размер зерна аустенита (номер 1-2), что приводит к снижению пластичности и вязкости. Для измельчения зерна необходима трехкратная закалка при 900-925 °С, что приводит к повышению пластичности и вязкости МСС в больших сечениях изделия.  [c.284]

Отжиг — термическая обработка, при которой сталь нагревается выше Лсз (или только выше Ad — неполный отжиг) с последующим медленным охлаждением. Нагрев выше Лсз обеспечивает полную перекристаллизацию стали. Медленное охлаждение при отжиге обязательно должно привести к распаду аустенита и превращению его в перлитные структуры. Нормализация есть разновидность отжига при нормализации ох-  [c.307]


Отпуск — это процесс термической обработки, связанный с изменением строения и свойств закаленной стали при нагреве ниже критических температур. При отпуске происходит распад мартенсита (пересыщенного твердого раствора С в а-Ре после закалки) и остаточного аустенита. Вследствие перехода к более устойчивому состоянию образуются структуры продуктов распада УИ и Л, смеси а-Ре и карбидов. При этом повышаются пластичность и вязкость, снижается твердость и уменьшаются остаточные напряжения в стали.  [c.107]

Зерна аустенита, образовавшиеся при нагреве свыше при предшествующей термической обработке.  [c.512]

Отпуск при 560° С приводит к интенсивному распаду остаточного аустенита, превращению его во вторичный мартенсит и значительному повышению твердости первого слоя (с 500—600 кгс/мм перед отпуском до 850—925 кгс/мм после отпуска), в то время как микротвердость исходной структуры сохраняется равной 780 кгс/мм (кривая 2, рис. 5). Таким образом, отпуск быстрорежущей стали, подвергнутой нагреву лучом ОКГ, при температуре 560° С приводит к некоторому упрочнению ее по сравнению с исходным состоянием стали, полученным в результате стандартной термической обработки. Повышение микротвердости составляет 70—100 кгс/мм  [c.17]

Термомеханическая обработка представляет собой сочетание двух процессов пластической деформации и термической обработки. Для осуществления термомеханической обработки в настоящее время выработан ряд способов, рекомендованных промышленности. Основные из них базируются на том, что сталь нагревается до состояния аустенита, подвергается пластической деформации при температурах стабильного или метастабильного аустенита, затем непосредственно закаливается на мартенситную структуру и подвергается низкому отпуску. По другому варианту термомеханической обработки после деформации аустенита проводится обработка на полигонизацию. Успешное развитие получают такие методы, как взрывная обработка, деформация мартенсита, деформация и дисперсионное твердение и др.  [c.40]

Классификация легированных сталей по микроструктуре несколько условна. Характерные для какого-либо класса структуры получаются в результате различных режимов термической обработки. Стали ферритного, перлитного и мартенситного классов названы по микроструктурам, получаемым при охлаждении на воздухе — нормализации. Стали аустенитного класса получают характерную структуру аустенита после нагрева до температур около 1000—1100° С и резкого охлаждения — аустенизации. И, наконец, стали ледебуритного класса получают характерную микроструктуру с участками ледебурита в результате очень медленного охлаждения литых деталей — отжига.  [c.164]

Существенную роль в процессах мартенситного превращения играют дефекты кристаллического строения. В общем случае чем совершенней решетка аустенита, тем больше должна быть м и тем ниже М. . Возникающие при различных воздействиях (термической обработке, пластической деформации, облучении) дефекты структуры могут, однако, не только стимулировать мартенситное превращение, но и, наоборот, задерживать его — снижать и уменьшать количество образующегося мартенсита. В первом случае это скорее всего дефекты, возникающие при небольших степенях пластической деформации, относительно неустойчивые и исчезающие при невысоких температурах. Во втором случае — это более устойчивые дефекты, для устранения которых требуется более высокая температура нагрева.  [c.264]

В период выдержки проксхоАят. а) выравнивание температуры в сечении до заданной величины Afjj.s б) диссоциация карбидов или нитридов и выравнивание концентрации легирующих элементов за счёт их диффузии в) насыщение стали углеродом, азотом или легирующими элементами (при химико-термической обработке) г) уменьшение и снятие напряжений в сечении изделий д) рост зерна аустенита (при нагреве выше критических точек у4сз, Ас ).  [c.507]

Однако быстрое охлаждение вызывает сильное переохлаждение аустенита, что уменьшает количество свободного феррита и приводит к образованию тонкой ферритно-цементитной структуры (троостит, сорбит). После закалки следует отпуск, чаще самоот-пуск за счет теплоты, сохранившейся при неполном охлаждении при. закалке. После упрочнения сортового проката временное сопротивление о в возрастает в 1,5—2,0 раза при сохранении bu o кой пластичности и понижении порога хладноломкости. Одновременно повышается и предел выносливости. Термическая обработка с прокатного нагрева позволяет сэкономить 10—50 % металла для изготовления конструкций, дает экономию энергетических ресурсов и позволяет в ряде случаев заменить легированные стали термически упрочненными углеродистыми сталями.  [c.257]

В процессе изготовления аппаратуры и оборудования из коррозионностойких сталей, вследс -вие неправильной термической обработки или при сварке могут возникнуть условия, вызывающие межкристаллитную коррозию. По современным представлениям преимущественное разрушение границ зерен обусловлено электрохимической неоднородностью поверхности, возникающей в определенном для данного сплава интервале температур в результате структурных превращений. Например, при нагреве хромоникелевых сталей при 600—800 °С происходит выделение из твердого раствора сложных карбидов, содержащих хром, железо и никель. Эти карбиды выпадают преимущественно по границам зерец, что приводит к обеднению отдельных участков сплава хромом. Наиболее сильное обеднение наблюдается в зоне, непосредственно прилегающей к границе рерна. Имеются и другие факторы, способствующие межкристаллитной коррозии. Например, для коррозионностойких сталей, содержащих молибден, большое значение приобретает выделение о-фазы, также способствующей обеднению хромом прилегающих к границам участков. Перераспределение хрома в коррозионностойких сталях возможно и в результате выпадения высокохромистого феррита — продукта распада аустенита, что вызывает межкристаллитную коррозию, например, сварных швов. Существует мнение, что на склонность к межкристаллитной коррозии влияют также и внутренние напряжения.  [c.55]


Превращение мартенсита и остаточного аустенита при нагрев (отпуск стали). Термическая обработка, заключающаяся в нагреве закаленной стали ниже точки Ai, взывается отпуском. Цель отпуска — уменьшение уровня внутренних напряжений и повышение сопротивления разрушению. В результате отпуска достигается заданный (требуемый) уровень прочности, пластичности и сопротивления разрушению.  [c.147]

Рис 46 Схема диаграмм состояний железо-легирующий элемент а- стали первой группы б- стали второй группы При содержании легирующих элементов больше в% или с% стали имеюг однофазную структуру аустенита или феррита и будут относиться к сталям аустенитного или ферритного классов. При нагреве фазовые превращения в них не происходят, он и не упрочняются термической обработкой (закалкой).  [c.88]

Критические точки, соответствующие температурам превращения, указаны на диаграмме /li(727° ) точка Аз, понижающаяся с увеличением содержания углерода по линии GS и точка Лс , изменяющаяся по линии SE. Смещение критических точек относительно температур, соответствующих равновесному состоянию сплавов, происходящее вследствие теплового гистерезиса, в реальных условиях нагрева и охлаждения условно обозначакзт так A i, Асз — при нагреве, Аг- , Аг — при охлаждении. Для практики термической обработки стали изучение механизма и кинетики образования аустенита имеет большое значение, поскольку превращение аустенита при  [c.112]

Рис. 91. Превращение аустенита при непрерывном охлаждении стали 20Х2Н4А. Диаграмма построена с применением электронного вакуумного дилатометра с автоматическим программированием заданного режима. Скорость нагрева до 800° С—100° С/с, выдержка 5 мин. Образцы охлаждали в аргоне, скорость охлаждения от 0.036 до 22° С/с. Образцы предварительно подвергались ложной цементации и термической обработке [94] Рис. 91. Превращение аустенита при непрерывном охлаждении стали 20Х2Н4А. Диаграмма построена с применением электронного вакуумного дилатометра с автоматическим <a href="/info/106311">программированием заданного</a> режима. Скорость нагрева до 800° С—100° С/с, выдержка 5 мин. Образцы охлаждали в аргоне, <a href="/info/166555">скорость охлаждения</a> от 0.036 до 22° С/с. Образцы предварительно подвергались ложной цементации и термической обработке [94]
На рис. 49, а, б, в показаны микрофотографии поверхности стали IIIX15, подвергнутой плоскостной обработке. Центральную и основную часть каждого пятна лазерного воздействия занимает слаботравящаяся зона с твердостью 1200—1300 кгс/мм. Отсутствие в этой зоне карбидов показывает, что температура нагрева здесь существенно превышала критическую точку Ас , в результате чего все карбиды растворились в аустените. При последующем быстром охлаждении после окончания импульса ОКГ (в результате отвода тепла в глубину образца) в этой зоне произошла полная закалка и образовалась мартенситная структура (рис. 50, а), обладающая высокой твердостью. Значительная часть аустенита при этом сохранилась вследствие большого содержания в нем углерода и хрома, которые перешли в твердый раствор при нагреве до высоких температур. Однако этот остаточный аустенит обладает высокой твердостью, так как в процессе закалки он подвергся фазовому наклепу, усиленному вследствие локального и импульсного характера термического цикла.  [c.74]

Превращение остаточного аустенита в мартенсит при длительном хранении и особенно ко время работы подшипника при отрицательных температурах сопровождается значительным увеличением его линейных размеров. Это происходит в том случае, когда фактическая температура закалки оказывается выше 1070° С, Для стабилизации размеров и повышения контактной усталостной прочности применяют дополнительную обработку стали холодом. Мартенситное превращение при закалке в практически применяемом интервале закалочных температур заканчивается при 70° С. Оптимальный режим термической обработки стали 9X18, позволяющий получить высокую степень стабильности геометрических размеров деталей подшипников в интервале рабочих температур от —200 до + 150 С и обеспечивающий наилучший комплекс механических свойств, состоит из предварительного (до 850° С) и окончательного нагрева (до 1050—1070° С), охлаждения в масле, а затем замедленного охлаждения до —70° С и отпуска при 150—180° С.  [c.376]

Термическая обработка этих <я-алей применительно к упругим элементам отличается рядом оеобённостей. После закалки сталь должна -иметь мелкозернистое строение при минимальном коли честве остаточного аустенита. Первое условие ревизуется путем регулирования температуры нагрева при закалке или применением 2—3-кратной закалки, позволяющей повысить величину фазового наклепа и тем самым увеличит , число центров рекристаллизации, или двухкратной закалкой с промежуточным нагревом при 650° С.  [c.36]

Ливкой в металлические формы (кокили). В структуре отливок до термической обработки имеются карбиды, располагающиеся по границам зерен аустенита, что и обусловливает высокую ее износостойкость. Для устранения хрупкости стали карбиды необходимо растворить. Поэтому отливки из стали Г13Л закаливают с 1 050— 1 150° С в воде. При нагреве под закалку карбиды растворяются, а быстрое охлаждение препятствует их обратному выделению. В результате получается пересыщенный углеродом аустенит.  [c.359]

Технологический процесс включает ряд операций подготовку исходного материала, волочение, термическую обработку, покрытие и отделку. Исходным материалом для производства стальной проволоки является катанка диаметром от 5 до 15 мм в бунтах массой до 600 кг. Перед волочением катанку подвергают травлению для удаления окалины с поверхности. Наряду с травлением в кислотных растворах окалину с поверхности катанки удаляют также механическим или электрохимическим способом. При производстве высокопрочной проволоки из сталей типа ЗОХГС, 50ХФ и др. катанку подвергают патентированию. Патентирование заключается в нагреве стали до температуры однофазного состояния аустенита, выдержке в соляном растворе при 450—550 °С и охлаждении на воздухе. Сорбитная структура, полученная после патентирования, улучшает механические свойства катанки — повышается пластичность и прочностные характеристики металлов. Силы трения в зоне контакта металла с каналом волоки являются вредными, препятствующими повышению эффективности процесса. Для уменьшения коэффициента трения поверхность катанки подвергают меднению, фосфатнрованию, желтению, известкованию. Перед подачей в волочильную машину бунты катанки укрупняют на стыкосварочной машине. Перед задачей в волоку конец катанки заостряется на острильных станках. Операция острения может проводиться перед задачей в каждую волоку, если волочение осуществляется через несколько волок.  [c.339]

С затвердеванием металла шва структурные превращения в нем не заканчиваются. Например при сварке стали первичные кристаллиты сразу после их образования состоят из аустенита - твердого раствора углерода и легирующих элементов в у-железе, существующего при высоких температурах (750...1500 °С ). В процессе охлаждения аустенит распадается, превращаясь в зависимости от состава стали и скорости охлаждения в другие фазы пластичный феррит, более прочный перлит и прочный, но малопластичный мартенсит. Скорость охлаждения зоны сварки обычно велика, и структурные превращения не успевают произойти до конца. Следовательно, меняя скорость охлаждения сварного соединения, подогревая или искусственно охлаждая его, можно в некоторых пределах управлять вторичной кристаллизацией металла шва и его механическими свойствами. Теплота, выделяемая источником нагрева, при сварке распространяется в основной металл. Его участки нагреваются до температуры плавления на границе сварочной ванны и имеют температуру окружающей среды вдали от нее. Это не может не сказаться на структуре металла. Зону основного металла, в которой в результате нагрева и охлаждения металла происходят изменения структуры и свойств, называют зоной термического влиянця (ЗТВ). Каждая точка в ЗТВ в зависимости от расстояния до оси шва достигает различной максимальной температуры, нагревается и охлаждается с различными скоростями. Изменение температуры данной точки во времени KdiZUbdiKiX термическш циклом. Каждая точка ЗТВ имеет при сварке свой термический цикл. Значит, металл в ЗТВ подвергается в результате сварки нескольким видам термической обработки. Поэтому в ЗТВ наблюдаются четко выраженные участки с различной структурой и свойствами.  [c.29]


Технологические свойства стали, наоборот, в значительной степени определяются ее наследственной зернистостью. Наследственно мелкозернистую сталь легче подвергать термической обработке, так как допустимый интервал температур нагрева под аакал ку, нормализацию и т. д. у нее значительно шире. При прокатке, ковке и других видах горячей обработки давлением дробится зерно аустенита. Но если эта обработка заканчивается пр И высоких температурах, то зерно может быстро вырасти. Поэтому обработку давлением стремятся заканчивать  [c.125]

Если сталь нагреть до температуры ниже линии GSE, полной перекристаллизации не произойдет. В доэвтектоидкои стали наряду с мелкими зернами аустенита останутся крупные зерна феррита. В заэвтектоидной стали сохранится сетка вторичного цементита. При нагреве точно до температуры на линии GSE превращение будет завершаться очень -медленно. Производительность СНИЗИТСЯ, окисление и обезуглероживание возрастут. Для обеспечения быстрого превраш,ения выгоднее нагрев на 30—50° С выше линии GSE. Дальнейший нагрев нецелесообразен, так как приводит к перерасходу топлива или электроэнергии на нагрев деталей и может вызвать интенсивный рост зерна. Такой дефект термической обработки называется перегревом. Он может быть исправлен повторным отжигом.  [c.140]


Смотреть страницы где упоминается термин Термическая обработка аустенита при нагреве : [c.152]    [c.249]    [c.255]    [c.697]    [c.449]    [c.280]    [c.225]    [c.13]    [c.379]    [c.258]    [c.20]    [c.172]    [c.141]   
Основы металловедения (1988) -- [ c.147 ]



ПОИСК



Аустенит

НАГРЕВ ПОД ТЕРМИЧЕСКУЮ ОБРАБОТКУ

Термическая прн нагреве



© 2025 Mash-xxl.info Реклама на сайте