Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закалка индукционным нагревом

При единовременной закалке индукционному нагреву подвергается сразу вся поверхность, подлежащая закалке (фиг. 18). Этот способ применяют для закалки дисковых деталей, или для местной закалки. Он отличается большой производительностью, так как процесс нагрева занимает всего несколько секунд, а иногда — доли секунды.  [c.145]

Недостатком этого метода упрочнения является трудность его унификации. Для каждой детали конструкции индуктора, охлаждающих устройств и установок в целом разрабатываются отдельно. Поэтому применение для поверхностной закалки индукционного нагрева при единичном и мелкосерийном производстве должно быть технически и экономически обосновано с учетом как затрат непосредственно на термическую обработку, так и эффекта от повышения работоспособности изделий.  [c.336]


После закалки индукционным нагревом изделия подвергают низкому отпуску (160—200° С). Нередко детали подвергают самоотпуску. В этом случае при закалке охлаждение проводят не до конца и в детали сохраняется некоторое количество тепла, которое нагревает закаленный слой до температур отпуска.  [c.240]

Однако на практике применяется и восстановление лишь геометрической формы деталей путем придания им ремонтных размеров, больших или меньших начального. Хотя посадка сопряжений при этом восстанавливается, взаимозаменяемость сохраняется лишь частично, в пределах только данного стандартного ремонтного размера, а при свободных ремонтных размерах новое нарушается. Придание детали ремонтного размера и правильной геометрической формы производится механической обработкой. Восстановление начального или, когда необходимо, большего его ремонтного размера для деталей класса валов осуществляется способами добавочных деталей, наплавки, металлизации, электрических покрытий, давления в сочетании (где это необходимо) с различными видами восстановления первоначальной поверхностной твердости деталей закалкой индукционным нагревом или химикотермической обработкой являются лишь отдельными операциями технологического процесса восстановления деталей, а не самостоятельными способами.  [c.293]

Основное назначение поверхностной закалки повышение твердости, износостойкости и предела выносливости обрабатываемого изделия. Сердцевина изделия остается вязкой и воспринимает ударные нагрузки. В практике более часто применяют поверхностную закалку с индукционным нагревом током высокой частоты (т. в. ч.). Реже, главным образом для крупных изделий, — закалку с нагревом газовым пламенем.  [c.220]

Закалка с индукционного нагрева. Индукционный нагрев происходит вследствие теплового действия тока, индуктируемого в изделии, помещенном в переменное магнитное поле.  [c.220]

Так, при печном нагреве температура закалки стали о 0,4 % С составляет 840—860 С, при индукционном нагреве со скоростью нагрева 250 °С/с равна 880—920 С, а при 500 "С/с — 980—1020 С. Вследствие неоднородности аустенита при скоростном индукционном нагреве охлаждение должно быть более интенсивным, чем при обычной закалке.  [c.222]

После закалки с индукционным нагревом изделия подвергают низкому отпуску при 160—200 °С, нередко — самоотпуску. В этом  [c.222]

Иногда изделия из среднеуглеродистых сталей подвергают цианированию или поверхностной закалке с индукционным нагревом.  [c.182]


Закалка с индукционным нагревом поверхностного слоя токами высокой частоты помимо технологических преимуществ (экономичность, высокая производительность) дает значительный упрочняющий эффект, обязанный возникновению в закаленном поверхностном слое остаточных напряжений сжатия.  [c.166]

Поверхностная закалка с индукционным нагревом. Отпуск 160-200 С  [c.371]

Поверхностную закалку проводят индукционным нагревом током высокой частоты (ТВЧ), газовым пламенем, нагревом лазерным лучом.  [c.69]

Выше были рассмотрены процессы поверхностной закалки индукционным способом с помощью одного какого-либо закалочного индуктора. За последние годы получила распространение закалка полуосей с фланцами для автомобильных мостов с непрерывным выходом закаленного слоя со стебля полуоси на галтель и поверхность фланца, с выходом границы закаленного слоя в область пониженных напряжений на фланце [8]. Известен также способ закалки поверхности колец больших диаметров (крупногабаритных подшипников) парными индукторами без стыков закаленных зон подобно поверхности бублика. Эти способы закалки назовем комбинированными, поскольку закалка производится не одним, а двумя или более индукторами, питаемыми каждый от отдельного понизительного закалочного трансформатора с отдельной программой управления движением, закалочными спрейерами и нагревом. Использование комбинированного индуктора, составленного из нескольких активных проводов автономного питания, соответствующей геометрии и размеров, является зачастую более эффективным средством выравнивания нагрева на поверхности сложной формы, чем корректировка зазора, ширины и расположения активного провода, установка дополнительных магнитопроводов н магнитных шунтов в конструкции с одним индуктирующим проводом. Затем, полученная зона равномерного нагрева моя<ет быть подхвачена следующим индуктором для непрерывно-последовательного нагрева и т. д.  [c.25]

Метод индукционного нагрева основан на использовании следующих законов и явлений 1) закон электромагнитной индукции 2) поверхностный эффект 3) эффект близости 4) изменение свойств стали в процессе нагрева. Последнее явление особенно существенно при поверхностной термообработке, на что впервые обратил внимание чл. кор. АН СССР проф. В. П. Вологдин, автор метода поверхностной индукционной закалки [7,8].  [c.6]

Поверхностный эффект является основой метода индукционного нагрева, в особенности при поверхностной закалке. Он выражается в неравномерном распределении тока по сечению проводника, при котором наибольшая плотность тока наблюдается у одной из поверхностей проводника [1,23].  [c.7]

На рис. 1-6 представлено распределение температуры при индукционном нагреве под поверхностную закалку. Кривая 1 соответствует режиму нагрева при х, < называемому глубинным. При этом режиме нагрева роль теплопроводности в значительной мере снижена, хотя она и проявляется в процессе нарастания нагретого слоя. Кривая 2 соответствует случаю х > А, . Здесь основную роль играет теплопроводность так же, как и при нагреве внешними источниками тепла, например, в печи или соляной ванне. Такой тип нагрева называют чисто поверхностным. Он характеризуется большими тепловыми потерями, чем глубинный. Время  [c.16]

Индуктор является основным элементом всякой установки для индукционного нагрева. В большинстве случаев достоинства и недостатки технологических устройств, в которых используется индукционный нагрев, могут быть поставлены в прямую связь с особенностями конструкции индуктора, который выбран для осуществления заданной технологической операции (закалки, сварки и др.). Поэтому каждый специалист, работающий в области промышленного использования индукционного нагрева, должен достаточно хорошо разбираться в основных принципах расчета и конструирования индукторов. Эти принципы не являются универсальным средством, позволяющим во всех случаях практики разработать оптимальный индуктор. Только практическая работа по конструированию индукторов и наладке нагревательных установок поможет  [c.90]

Индукционный нагрев протекает, как правило, очень быстро. Например, в случае поверхностной закалки время нагрева обычно не превышает 10 сек. Даже небольшие неточности, неизбежные при проведении инженерных расчетов, могут при практическом осуществлении режимов, полученных расчетным путем, привести к значительному отклонению полученных результатов от заданных технических требований. Окончательная форма индуктирующего провода, режим нагрева и охлаждения обычно выбираются после изготовления и испытания опытного образца индуктора.  [c.91]


Основы надежности закладываются конструктором в содружестве с технологом при проектировании. Заданная надежность обеспечивается в процессе производства применением прогрессивной технологии. В эксплуатации заданная функция надежности реализуется выполнением всех правил эксплуатации. Надежность изделия тесно связана с его долговечностью. Эффективных мер повышения долговечности много, в их числе закалка стальных деталей при нагреве т. в. ч., дающая возможность увеличить износостойкость зубчатых передач в 2—4 раза хромирование трущихся деталей дает возможность увеличивать срок службы по износу в 3—5 раз и др. Хорошая система смазки является необходимым условием обеспечения надежности и долговечности машин. Широкое применение в машиностроении т. в. ч. для упрочнения деталей машин с целью повышения их ресурса объясняется многими их преимуществами по сравнению с другими видами термической обработки деталей. Однако реализовать эти преимущества возможно только при условии правильного установления параметров закалки. Важнейшими из них являются глубина закалки х , твердость HR , зона перехода закаленной части детали к незакаленной, частота тока и скорость процесса упрочнения. Теоретически глубина упрочнения трущейся детали должна равняться предельному допуску ее износа. Однако практически при ее определении следует учитывать условия работы детали, ее геометрические размеры и материал. Опыт применения т. в. ч. показывает, что при невыполнении этих условий закалка при индукционном нагреве приводит к отрицательным результатам. В тех случаях, когда зона перехода закаленной части детали к незакаленной совпадает с наиболее опасным сечением и местом концентрации напряжений, в этих зонах первоначально возможно появление микротрещин, а затем их развитие под действием знакопеременных нагрузок и усталостный излом. Аналогичные результаты могут быть и при недостаточной глубине закаленного слоя.  [c.206]

Наряду с освоением высокочастотной электротермии происходит внедрение в производство методов индукционного нагрева токами промышленной частоты. Исследования в этой области Уральского филиала Академии наук СССР и ЦНИИТМАШа позволили использовать токи промышленной частоты для поверхностной закалки, термообработки и нагрева заготовок под ковку и штамповку. Электрический нагрев токами промышленной частоты имеет большое будущее, позволяя ускорить и конвейеризовать процессы сушки, прессования, размораживания и т. д. [12, 35].  [c.125]

Таким образом, строение поперечного сечения образца после индукционной закалки состоит из трех зон с существенно различными свойствами поверхностной зоны глубиной до 2,5 — 3 мм при средней твердости = 4,9 ГПа, переходной зоны шириной до 1 мм с твердостью = 2,75 ГПа. Формированию такой сильно неоднородной структуры способствуют как достаточно высокие скорости охлаждения на поверхности образца, обеспечивающие образование в поверхностном слое бездиффузионных и промежуточных структур распада аустенита, так и значительный градиент температур по сечению образца, возникающий при высокочастотном индукционном нагреве. При этом температура только поверхностного слоя выше критической температуры тогда как все остальное сечение прогревалось до меньших температур, а скорость охлаждения этих слоев металла была, очевидно, существенно меньше критической скорости закалки исследованных сталей.  [c.180]

В настоящее время применяются два принципиально отличных метода закалки индукционным нагревом поверхностная закалка для конструкционных сталей типа 40, 45 и 45Х объемно-поверхностная закалка (при глубинном индукционном нагреве) для сталей с регламентированной прокаливаемостью 58 (55ПП), 47ГТ, ШХ4РП. Второй метод обеспечивает более высокую конструктивную прочность, и поэтому его применяют для закалки тяжелонагруженных деталей, подвергаемых высоким изгибающим, крутящим и контактным нагрузкам, а также для закалки детален сложной формы — зубчатых колес, крестовин, деталей подшипников качения.  [c.25]

Для поверхностной закалки применяют обычные углеродистые стали с содержанием углерода 0,4% и выше . Легированные стали применять, как правило, не следует, так как глубокая прокалнваемость, которая достигается легированием, здесь совершенно не нужна. Более того, в ряде случаев требуются стали пониженной прокалнваемости. Например, известно, что весьма трудно равномерно нагреть шестерню на одинаковую глубину по всему контуру. При нагреве в машинном генераторе будут сильнее нагреваться впадины, а в ламповом генераторе — вершины зубьев. Предложен способ глубокого индукционного нагрева стали пониженной прокаливаемости. На рис. 255 показан макрошлиф шестерни из стали пониженной прокаливаемости, закаленной после глубокого индукционного нагрева. Выше критической точки был нагрет весь зуб н часть основания, но так как сталь была попиженнои прокаливаемости, то  [c.316]

При больших скоростях наг рева превращение перлита в аустепит сдвигается в область высоких температур (см. рис. 95), и начальное зерно аустеиита уменьшается. Поэтому температура закалки при индукционном нагреве выше, чем при нагреве в печах, где скорость нагрева не превьилает 1,5—3°С/с. Чем больше скорость нагрева в районе фазовых превращений, тем выше должна быть температура для достаточно полной аустенитизации и получения при охлаждении оптимальной структуры (мелкокристаллического мартенсита) и максимальной твердости.  [c.222]

При поверхностной закалке с иснользованнем индукционного пагрева можно [юлуч1ггь твердость на HR 3—6 ед. больше, чем при закалке после нагрева в печи. Это часто объясняется высокой скоростью охлаждения при иоверхностной закалке в мартенситном интервале температур, исключающей возможность отпуска в процессе закалки.  [c.223]


После закалки с индукционного нагрева действительное sepiio аустенита значительно мельче (балл 10—12), чем при обычной закалке с печным нагревом (балл 7—8). С повышением темп( ратуры число зародышей аустенита возрастает более интенсивно, чем ско-  [c.223]

Толщина закаленного слоя равна 2—4 мм, а его твердость для стали с 0,45—0,5 % С HR 50—56 В тонком поверхностном слое образуется мартенсит, а в нижележащих jkjhx троосто-мартенсит. Газопламенная закалка вызьпзает меньшие деформации, чем объемная. Процесс газопламенной закалки можно автома1изировать и включить в общий ноток механической обработки. Для крупных деталей этот способ закалки часто более рентабелен, чем закалка с индукционным нагревом.  [c.226]

Влияние скорости индукции онного нагрева ТВЧ на тем. пературу закалки характеризуется кривыми рис. 10.5, На ди. аграмме выделены зоны режимов индукционного нагрева, которые обеспечивают получение твердости, превышающей твердость после обычной закалки при медленном нагреве. Средние линии (зона ///(определяют  [c.136]

Наиболее эффективен способ создания в зоне ослаблений предварительных напряжений сжатия. Некоторые виды обработки (поверхностная закалка с индукционным нагревом, азотирование с последующим накатыванием) практически полностью парализуют концентрацию напряжений даже у концентрационнощувствительных сталей.  [c.302]

Твердость рабочих поверхностей валов и ступиц не ниже НДС 35 — 40 (закалка с последующим высоким отпуском). Лучщс подвергать валы поверхностной закалке с индукционным нагревом (НДС 50 — 55).  [c.305]

Валы следует тср.мически обрабаз ывать на твердость > НКС 35 — 40. В тяжелонагруженных опорах валы подвергают цементированию или поверхностной закалке с индукционным нагревом на твердость НКС 55 — 58 с последующим упрочняющим накатыванием.  [c.513]

Тигельные индукционные печи послужили прообразом многочисленных установок индукционного нагрева с целью осуществления различных технологических операций. В 1935 г. проф. В. П. Вологдиным и инж. Б. Н. Романовым был предложен новый метод поверхностной закалки при индукционном нагреве, быстро завоевавший всеобщее признание благодаря невиданной ранее производительности, малой энергоемкости и огромным возможностям автоматизации процесса. В развитии этого метода решающую роль сыграла лаборатория В. П. Вологдина в ЛЭТИ. Большую роль сыграли также группы, руководимые К- 3. Шепеляковским, Г. И. Бабатом, М. Г. Лозинским и др. Далее индукционный нагрев получил широкое применение в кузнечном и прокатном производствах, где мощность отдельных установок достигает сотен мегаватт, для сварки, пайки, отжига, отпуска, для получения материалов сверхвысокой чистоты и для других целей. В наше время невозможно  [c.5]

В отличие от НТМО, ВТМО не требует прессового оборудования большой мощности. Однако существенным недостатком ВТМО являются определенные технологические трудности, связанные с необходимостью во многих случаях подавлять процесс рекристаллизации [161]. Так, проведение ВТМО конструкционных легированных сталей в условиях прокатки при температуре 800—1100° возможно только на сечениях толщиной около 10 ММ] дальнейшее увеличение толшины заготовок приводит к развитию процесса рекристаллизации и к снятию эффекта упрочнения. В то же время одним из перспективных направлений в использовании ВТМО является аналогичная по технологии обработка поверхностных слоев изделий [131, 132] поверхность детали или отдельные ее участки (в особенности в местах концентрации напряжений) могут быть упрочнены в результате локального екоростного индукционного нагрева токами высокой частоты, совмещаемого с последующей местной пластической деформацией и закалкой [161].  [c.79]

Опыт закалки деталей сложного профиля, напри.мер шестерен, показал, что получение равномерного слоя по всей рабочей поверхности при индукционном нагреве возможно лишь при некоторых условиях. Если эти условия не соблюдаются, то закаленными оказываются или только зубцы, или, наоборот, только впадины. При этом форма индуктора не имеет решающего значения, хотя и оказывает некоторое влияние на характер нагрева. На этом основании при приближенном решении вопроса напряженность магнитного поля во всех точках поверхности нагреваемого предмета можно считать постоянной, что значительно упрощает задачу, не внося больщих искажений в основные закономерности.  [c.144]

Шепеляковский К- 3. Условие применения метода поверхностной закалки при глубинном индукционном нагреве. В кн. Применение токов высокой частоты в электротермии. Л., Машиностроение , 1968, с. 149— 166 с ил.  [c.260]

В 1935 г. в лаборатории В. П. Вологдина в Ленинградском электротехническом институте был разработан метод высокочастотной поверхностной закалки в условиях производства. Инженер Г. И. Бабат предложил новый способ высокочастотной закалки с применением электронной аппаратуры (был внедрен на заводе имени Орджоникидзе). В 1936 г. на заводе Светлана была выпуш,ена первая серия ламповых высокочастотных генераторов промышленного назначения для индукционного нагрева.  [c.118]

Индукционный нагрев. В военные и особенно в пос.левоенные годы широкое распространение в машиностроении п прежде всего в автомобильной и тракторной промышленности получила поверхностная закалка токами высокой частоты (твч). Успешному внедрению этого метода способствовали работы В. П. Вологдина, Г. И. Бабата и М. Г. Лозинского. С помощью индукционного нагрева твч оказалось возможным производить сквозной нагрев металлов под ковку и штамповку.  [c.124]

Термической обработке подверга,ли заготовки диаметром 20 мм, которые нагревали в лабораторной печи до 1203—1223 К с выдерл<кой 15 мин. Скорость охлаждения изменяли охлаждением заготовок вместе с печью, на спокойном воздухе, в масле и соленой воде. Поверхностную закалку с применением индукционного нагрева осуществляли на высокочастотной модернизированной установке ЛГЗ-3000 при частоте 450 кГц в кольцевом индукторе, на выходе из которого заготовка подвергалась спреериому охлаждению водой. В процессе  [c.175]

Однако применение ускоренного охлаждения в масле и особен- 10 в воде приводит к существенному увеличению статической и циклической прочности при сохранении довольно высоких значений пластичности. Характеристики прочности и пластичности после индукционной закалки и закалки в воде примерно одинаковы, ио следует отметить более значительное повышение предела текучести при индукционной закалки. Обращает внимание исключительно высокое уве.личенйе предела выносливости после индукционного нагрева, с последующим быстрым охлаждением водяным душем. Так, пределы выносливости стали 10Г2С1 после индукционной закалки гладких образцов в 2,31 раза, а для надрезанных образцов в 3,8 раза превышают соответствующие пределы выносливости той же стали в состоянии поставки. Привлекают внимание также абсолютные значения пределов выносливости сталей после указанной обработки, которые для гладких образцов не уступают, а для надрезанных существешю превышают пределы выносливости легированных среднеуглеродистых  [c.176]


Смотреть страницы где упоминается термин Закалка индукционным нагревом : [c.38]    [c.223]    [c.208]    [c.67]    [c.5]    [c.133]    [c.317]   
Материаловедение Учебник для высших технических учебных заведений (1990) -- [ c.220 ]



ПОИСК



Глубина закалки при индукционном нагреве

Детали с закалкой поверхностной с индукционного нагрева

Детали с закалкой поверхностной с индукционного нагрева борьбы

Закалк

Закалка

Закалка индукционная

Закалка с индукционным нагревом ТВЧ - Длительность нагрева 430 — Преимущества

Закалка стали поверхностная индукционного нагрев

Индукционная поверхностная электрозакалка Сущность поверхностной закалки при нагреве токами высокой частоты

Индукционный

Лабораторные работы по закалке стали с индукционным нагревом

Нагрев индукционный

Нагрев под закалку поверхностную индукционный — Особенности 89 — Температуры 89, 90, 95 — Частота тока — Выбор

Поверхностная закалка с индукционного нагрева (канд. техн. наук М. М. Климочкин)

Поверхностная закалка с нагревом токами высокой частоты (индукционная закалка)

Преимущественные и запрещенные режимы индукционного нагрева при закалке

Проектирование отделений (участков) поверхностной закалки при индукционном высокочастотном нагреве (лауреат Сталинской премии, д-р техн. наук Лозинский)

Проектирование отделений поверхностной закалки при индукционном высокочастотном нагрев

Скорость нагрева индукционного при закалке

Сталь - Глубина сверления 788 - Обеспечение конструкционной прочности при термической обработке 369 Обрабатываемость 202 - Поверхностная закалка при индукционном нагреве 372 - Полирование 252, 253 Режимы лезвийного резания 127, 128 - Режимы резания

Температура вспышки органических индукционного нагрева при закалке

Технологические параметры индукционного нагрева при закалке

Характер износа направляющих металлорежущих станков. . — Поверхностная закалка с индукционным нагревом токами высокой частоты



© 2025 Mash-xxl.info Реклама на сайте