Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дипольное магнитное взаимодействие

Процессы спин-спиновой релаксации включают два основных типа диполь-дипольное магнитное и обменное электростатическое взаимодействия. Диполь-дипольное магнитное взаимодействие возникает из-за того, что каждый парамагнитный ион находится в магнитном поле, представляющем собой сумму внешнего стационарного поля и полей, наведенных соседними ионами. Вследствие хаотической ориентации ионов это суммарное поле отличается по величине от внешнего и резонанс наблюдается в некотором интервале полей (частот) около среднего значения. Ши-  [c.180]


Взаимодействие см. Дальнодействующее взаимодействие Дипольное магнитное взаимодействие Ион-ионное взаимодействие Магнитное взаимодействие Электрон-ионное взаимодействие Электрон-фононное взаимодействие Электрон-электронное взаимодействие Вектор Бюргерса П 250—252  [c.402]

II 383-335 Дипольное магнитное взаимодействие II 288 и обменное (кулоновское) взаимодействие  [c.395]

Магнитное расщепление ядерных уровней, вызванное сверхтонким взаимодействием дипольного магнитного момента ядра ц с магнитным полем на ядре Ип, которое создается электронами собственного атома и магнитными моментами соседних атомов, а также поляризованными электронами проводимости [3—6].  [c.1055]

Процессы спин-спиновой релаксации зависят от двух основных типов взаимодействия диполь-дипольного магнитного и электростатического взаимодействия. Спин-решеточная релаксация характеризуется двумя основными механизмами  [c.188]

Эти результаты противоречат существующим теориям, но могут быть поняты, если принять во внимание магнитное взаимодействие составляющих частицы кластеров, совершающих вращательное движение. Температурную зависимость ширины линии ФМР в таком случае можно объяснить движением кластеров аналогично эффекту сужения линии ЯМР вследствие увеличения подвижности атомных ядер. Оценка среднего времени т (Г) между двумя последовательными изменениями направления флуктуирующего поля дипольного взаимодействия кластеров, выполненная методом случайных блужданий, дала следующие значения т st 4,6-с, при Г = 631 К и т 1,8- 10 с при Г О [8].  [c.207]

Сверхтонкая структура и эффект изотопического сдвига также часто могут приводить к уширению спектральной линии. Такие эффекты вызываются электрическим и магнитным взаимодействиями ядер с окружающими их электронными оболочками. В случае магнитно-дипольного взаимодействия вырождение одиночных энергетических уровней снимается, уровень расщепляется на ряд уровней, общее число которых зависит от суммарного момента количества движения системы. Если это расщепление меньше допплеровской ширины или такого же порядка, то структура остается неразрешенной и излучение системы уровней выглядит как симметрично уширенная линия. Кроме того, электростатическое взаимодействие зависит от радиуса заряженного ядра. Так как этот параметр различен для каждого изотопа одного и того же элемента, испускаемое излучение будет представлять собой комбинацию излучений каждого изотопа. Излучение будет немного сдвинуто по частоте и даст уширенную неразрешенную линию. Уширение, типичное для таких эффектов, составляет величину порядка 0,1 см . Эффекты изотопического  [c.323]


Кроме обменных взаимодействий, вносящих основной вклад в упорядочение ориентаций магнитных моментов атомов, важную роль в физике магнитоупорядоченных кристаллов играют и взаимодействия иной природы. Одним из них является магнитное взаимодействие между атомами с отличными от нуля магнитными моментами — так называемое диполь-дипольное взаимодействие, ялш магнитное дипольное взаимодействие. Величину связанной с ним энергии можно оценить выражением где 1 =дЬ/2тс — маг-  [c.369]

До сих пор мы почти совсем не обращали внимания на магнитные взаимодействия ядерных спинов, с электронными токами и на их электростатические взаимодействия с электронными зарядами. Поскольку ядра обладают магнитными моментами, то они чувствительны к магнитным полям, создаваемым спинами и орбитальными токами электронов. Атомные ядра не обладают электрическими дипольными моментами по причинам, которые будут вскоре рассмотрены, и поэтому нечувствительны к неоднородным электрическим полям. Однако они могут обладать квадрупольными электрическими моментами, на которые существенно влияют неоднородные электрические поля (в частности, создаваемые электронными облаками), приводя к появлению заметных вращательных моментов. Связывая электронную систему с системой ядерных спинов, эти взаимодействия могут проявляться при изучении любой из упомянутых систем.  [c.156]

Выражение для магнитного взаимодействия ядерного момента с электронным спином = (г )е I ( 1 1 г )е) получается умножением (VI.31) на электронную плотность д == г ) фе и интегрированием по координатам электрона. Для г ф О как видно из (VI.31), представляет собой регулярную функцию, первый член которой равен 2р[3 (8 г) ( Ц1 г)/г —8 и1/г ] обычное- диполь-дипольное взаимодействие), а второй член, согласно уравнению Лапласа, равен нулю. При г О первый член в (VI.31) ведет себя при вращении системы координат как сферическая гармоника второго порядка. Отсюда, если ре разложить в ряд по сферическим гармоникам не равный нулю вклад в (г )е г )е)  [c.167]

Теперь, когда магнитные взаимодействия, связанные с вращательными движениями, исключены, единственное различи между теорией дипольного взаимодействия в твердом водороде и теорией, развитой выше для случая жесткой решетки, состоит в том, что ориентация вектора РР больше не фиксирована в пространстве. Вместо этого его ориентация относительно кристаллической оси описывается вероятностным распределением и определяется квадратом одной из волновых функций (VI 1.15). Кристаллическая ось сама по себе имеет случайную ориентацию относительно внешнего поля Hq.  [c.214]

Казалось бы, наиболее естественно предположить, что взаимодействие между отдельными магнитными моментами связано с их магнитными полями и осуществляется либо непосредственно за счет магнитного диполь-дипольного взаимодействия, либо более косвенным образом, посредством спин-орбитальной связи. Однако чаще всего основными оказываются отнюдь не эти взаимодействия. Наиважнейшим источником магнитного взаимодействия является обычное электростатическое электрон-электронное взаимодействие. И действительно, во многих теориях магнетизма в первом приближении совершенно не учитывается ни диполь-дипольное, ни спин-орбитальное взаимодействие, а рассматривается только кулоновское взаимодействие.  [c.287]

Абсолютная величина этого вектора Р1 может принимать только целые значения в пределах от J—/ до / + /, т. е. (2/ + 1) или (2/ + 1) значений в зависимости от того, что больше / или ). Сверхтонкая структура оптических спектров является следствием магнитного взаимодействия между ядром и орбитальными электронами. Орбитальное движение электронов создает вектор магнитной индукции Ву, параллельный вектору I, тогда как ядро обладает магнитным дипольным моментом [Ху, направленным параллельно Л. Энергия магнитного взаимодействия равна  [c.90]


Теперь мы в состоянии выписать дипольный член (самый важный) и для энергии магнитного взаимодействия двух систем 1 и 2  [c.268]

Шевенара дифференциальный 290 Диполь-дипольное магнитное взаимодействие 180 Дифракция медленны.х электронов 152 Доза излучения 123  [c.348]

В ЯМР понятие спиновой температуры было введено X. Казимиром и Ф. дю-Пре при термодинамическом описании экспериментов К. Гор-тера по парамагнитной релаксации. В твёрдых телах ядерные спины связаны друг с другом дипольными магнитными взаимодействиями гораздо сильнее, чем с решёткой. Понятие спиновой температуры предполагает, что спины находятся в состоянии внутреннего равновесия, достигнутого за время поперечной релаксации Г2, существенно более короткого, чем время спин-решёточной релаксации Т, и что это состояние равновесия может быть описано внутренней температурой отличной от температуры решётки Г. Существенный вклад в развитие представления о спиновой температуре внёс Дж. Ван-Флек, обративший внимание на то важное обстоятельство, что разложение статистической суммы Z по степеням обратной температуры 1/Т позволяет найти Z без вычислений собственных значений энергии и собственных функций гамильтониана. Первым, кто активно использовал это обстоятельство, был, безусловно, И. Валлер. Итак, зная статистическую сумму состояний ] с энергией каждого из них при температуре резервуара Т  [c.168]

В другой работе [1095] исследовалась температурная зависимость ширины линии ФМР у частиц Ni, внедренных в поры Х-цеолита. Результаты измерений приведены на рис. 145. Авторы этой работы разложили суммарную ширину линии на три составляюш,ие АЯ,, обусловленную полем магнитокристаллической анизотропии АЯд, связанную со взаимодействием дииольных магнитных моментов частиц, и АЯд, относяш уюся к спин-решеточной релаксации. Величина АЯз пропорциональна дипольному магнитному моменту частицы, который, в свою очередь, пропорционален функции Ланжевена, даваемой формулой (448).  [c.327]

В работах [21] высказано предположение, что эффект ТМО в железо-никелевых ферритах обусловлен локальными искажениями типа Яна — Теллера (тетрагональное искажение в расположении ионов, окружающих ион Ni + в тетраэдрической позиции). Очевидно, что эта модель может объяснить возникновение наведенной магнитнай анизотропии лишь при низкотемпературных магнитных отжигах феррита, но не применима при объяснении аффекта ТМО при достаточно высоких температурах отжига. Таким образом, большинство экспериментов подтверждают предположения Танигу-чи, в соответствии с которыми источником наведенной магнитной анизотропии в ферритах при отсутствии ионов Со + является анизотропное магнитное взаимодействе (диполь-дипольное взаимодействие).  [c.177]

Перейдем теперь к учету влияния на резонансные магнитные переходы ядер их магнитного взаимодействия, называемого спин-спиновым или диполь-дипольным взаимодействием. В результате этого взаимодействия на каждый магнитный диполь, кроме внешнего поля, действует еще локальное магнитное поле Ялок, создаваемое соседними диполями. Поэтому в формулу  [c.268]

Ядра многих атомов в основном состоянии имеют отличный от нуля спиновый момент количества движения 1ш (целый или полуцелый в единицах Л) и коллинеарный с ним дипольный магнитный момент д, = уЬ1. За немногими исключениями, порядок величины этих моментов лежит в пределах 10 —10 магнетонов Вора. Именно благодаря существованию таких моментов возникает ядерный магнетизм. Не пытаясь проводить подробную параллель мещду ядерным и электронным магнетизмом, можно отметить основное различие мещду ними. Из трех обычных ввдов магнетизма, а именно ферромагнетизма (или антиферромагнетизма), диамагнетизма и парамагнетизма, в ядерном магнетизме. представляет интерес только последний. Напомним, о ферромагнетизм может возникнуть, когда произведение температуры образца Т на постоянную Больцмана к (т. е. кТ) становится сравнимым с энергией взаимодействия между спинами. Сильное обменное взаимодействие электростатического происхождения, способствующее возникновению электронного ферромагнетизма, в случае ядерного магнетизма отсутствует. Вследствие малости величины ядерных моментов магнитное взаимодействие между ними таково, что для возникновения ядерного ферромагнетизма (или антиферромагнетизма) необходима температура порядка 10 °К и даже меньше. Это условие делает ядерный ферромагнетизм предметом исследований, находящихся еа пределами экспериментальных возможностей (по крайней мере в настоящее время). Ядерную аналогию электронного диамагнетизма, т. е. магнетизма, обусловленного ларморовской прецессией электронных зарядов во внешнем магнитном поле, нелегко себе представить. Разумно ожидать, что по крайней мере в обычном веществе ядерный диамагнетизм будет совершенно незначительным.  [c.11]

Можно предположить, что во время столкновения благодаря поляризации электронных оболочек может возникать добавочное магнитное взаимодействие. Появление такого взаимодействия элементарно объя-сняетсяследующимобразом. В течение времени столкновения t у можно считать, что два атома образуют двухатомную молекулу. Возникающее при этом искажение электронных оболочек можно в хорошем приближении считать мгновенным. Дополнительное взаимодействие между ядерными спинами, вызванное искажением электронных оболочек, представляет собой не что иное, как косвенное взаимодействие, описанное в гл. VI. Посольку два атома находятся в состояниях когда они расположены на некотором расстоянии друг от друга, то это взаимодействие, по-видимому, будет в основном скалярным, и поэтому релаксационный механизм возможен только для неодинаковых ядерных спинов. В случае тяжелых атомов этот релаксационный механизм может быть значительно более сильным, чем обычное диполь-дипольное взаимодействие.  [c.301]

См. также Магнитное взаимодействие Магнитное упорядочение Спонтанная намагниченность Флуктуационно-дипольные (вандерваальсовские) силы П 21, 22 в ионных кристаллах П 33 и потенциал Ленварда-Джонса II28, 29 происхождение П 24, 25 Флюксон П 364 Фононы  [c.449]


В твердом магнетике моменты обычно отстоят друг от друга на расстояние примерно 2А, следовательно, V не превышает Ю эВ. Это значительно меньше разности электростатических энергий различных атомных состояний, составляющей обычно доли электронвольта. Поэтому нам необходимо ьыяснить причину, в силу которой электростатическая энергия пары магнитных ионов (или электронов) зависит от направления их магнитных моментов. Как мы увидим ниже, такая зависимость обусловливается принципом Паули. Именно благодаря нему электростатические, а не дипольные силы играют основную роль в возникновении магнитного взаимодействия ).  [c.288]

Другой, более сложный метод удержания ультрахолодиых нейтронов основан на использовании их магнитных дипольных моментов. Стенки криостата заменяются потенциальным барьером магнитного взаимодействия, создаваемым сильно неоднородным магнитным полем. Такое поле создается магнитным гексаполем и имеет мультипольную природу. Оно оказывается очень удобным для накопления и удержания нейтронов, так как магнитная индукция пропорциональна г и сила магнитного взаимодействия магнитного диполя с полем растет линейно при увеличении расстояния от центра. Траектория нейтрона оказывается достаточно простой, состоящей из его гармонических колебаний, которые легко рассчитываются теоретически.  [c.266]

В случае ядерного С.-ф. в. связь упругих колебаний твёрдого тела с системой ядерных спинов может осуществляться посредством нескольких типов электрич. и магнитных взаимодействий, сила к-рых периодически модулируется акустич. колебаниями. Такими взаимодействиями являются магнитное диполь-дипольное между соседними спинами электрич. квадру-польное между квадрупольными моментами ядра и градиентом электрич. поля, создаваемым внешними по отношению к ядру зарядами сверхтонкое взаимодействие в ферромагнитных материалах взаимодействие ядерного магнитного момента со слабым радиочастотным магнитным полем, возникающим при распространении поперечной звуковой волны в металле, и др. Ядра со спином /> 4 могут обладать электрич. квадрупольным моментом, к-рый является мерой отклонения распределения заряда в ядре от сферич. формы. Акустич. колебания кристаллич. решётки вызывают периодич. изменения градиента внутрикристаллич. электрич. полей, к-рые, взаимодействуя с квадрупольным моментом ядра, осуществляют ядерное С.-ф. в. (т. н. динамич. ядерное квад-  [c.335]

Рио. 3. Сходство между структурами разрешенных уровней энергии ядер, вращающихся в магнитном поле (слева), и одиночных атомов примеси в кристаллической решетке (справа) позволяет предсказать фотонное эхо. Как показывают схемы уровней, соответствующие рисункам, обе системы можно рассматривать как двухуровневые системы, способные возбуждаться под влиянием прямого резонансного взаимодействия. (Занятые состояния показаны цветными линиями, а незанятые — черными.) В случае протона, возбуждаемого вращающимся магнитным полем, энергетические состояния спин вверх и спин вниз связаны взаимодействием дипольного магнитного момента протона с внешними магнитными полями. В случае ионов примеси хрома в кристалле рубина, возбуждаемых циркулярно-поляризовапным светом, два из нескольких уровней энергии иона связаны взаимодействием электрического дипольного момента иона с вращающимся вектором электрического поля света. Электрический дипольный момент атома наводится вследствие поляризации распределенного электрического заряда —положительного у ядра и отрицательного у облака электронов. Эхо ядерных спинов регистрируется в виде электрического тока, фотонное эхо — в виде импульса света.  [c.144]

Другое важное О. п. связано с законом сохранения полной чётности для изолированной квант, системы (этот закон нарушается лишь слабым взаимодействием). Квант, состояния атомов, всегда имеющих центр симметрии, а также тех молекул и кристаллов, к-рые имеют такой центр, делятся на чётные и нечётные по отношению к пространств, инверсии (отражению в центре симметрии, т. е. к преобразованию координат х- х, у- —г/, Z-I—2) в этих случаях справедлив т. н. альтернативный запрет для излучательных квант, переходов для электрического дипольного излучения запрещены переходы между состояниями одинаковой чётности (т. е. между чётными или между нечётными состояниями), а для дипольного магнитного и квадрупольного электрического излучений (и для комбинац. рассеяния) — переходы между состояниями разл. чётности (т. е. между чётными и нечётными состояниями). В силу этого запрета можно наблюдать, в частности в ат. спектрах астр, объектов, линии, соответствующие магн. дипольным и электрич. квадрупольным переходам, обладающим очень малой вероятностью по сравнению с дипольными электрич. переходами (т. н. запрещённые линии).  [c.505]

Мп(ЫН4)2(В04)2бН20, могут примсняться при более высоких температурах, чем ЦМН, поскольку первое возбужденное состояние для них соответствует очень высоким температурам. Ниже температуры перехода 164 К кубическая решетка ХМК перестраивается в орторомбическую. Магнитные свойства ХМК достаточно хорошо известны [34] в связи с простотой основного состояния, а ионы в узлах решетки расположены на относительно больших расстояниях, так что диполь-дипольное взаимодействие становится незначительным. Дюрье [23] для ХМК нашел значения 6 = 0,00279 К , 0=12 мК и показал, что при температурах выше 1 К членами вида 1/Р и более высоких порядков можно пренебречь. Таким образом, соль ХМК с успехом может применяться в магнитной термометрии для области температур выше 0,3 К. Теория магнитного состояния для МАС изучена значительно хуже ввиду гораздо более трудного для описания основного состояния, чем у ХМК. Пока не получено достаточно точных численных значении для 0 и б, каждое из которых определяется экспериментально для конкретного образца. Тем не менее поведение индивидуальных образцов МАС довольно точно описывается уравнением (3.88)  [c.126]

Уравнения (6.32), (6.33), (6.39), (6.41), (6.43) и (6.46) учитывают общее движение, силовые поля, теплообмен и распределении по размерам. Логически можно обобщить их и на случаи с массо-обменом, химическими реакциями и т. д. Л1ожно было бы добавить, что в соответствии с обобщенным понятием многофазной среды в смеси газа с твердыми частицами, состоящими из одного вещества, частицы разных размеров, форм и масс, с разными электрическими зарядами, дипольными моментами или магнитными свойствами образуют разные фазы , помимо газовой. Для несферических частиц постоянные времени F ш G можно определить экспериментально. Поскольку учитывается взаимодействие между частицами, а внутренним напряжением в частицах прене-брегается, то эти соотношения применимы для объемных концентраций частиц в псевдоожиженном слое вплоть до 90 %, но неприменимы для плотных слоев (разд. 9.7). При этом нижний предел среднего расстояния между частицами до.чжен составлять от 2 до 3 диаметров частиц при расстоянии между частицами более 10 диаметров Fp и Gp можно не учитывать и Цт Рч Р lira о, = 0.  [c.286]

Магнитное дипольное и обменное взаимодействия. Штарковское расщепление и сверхтонкая структура представляют в принципе одночастичные задачи. В принципе здесь могут быть получены точные решения соответствующих уравнений квантовой механики, хотя вследствие нашего ограниченного знания кристаллографических характеристик (например, о точном расноложении молекул воды) некоторые параметры должны подгоняться эмпирически.  [c.466]



Смотреть страницы где упоминается термин Дипольное магнитное взаимодействие : [c.407]    [c.418]    [c.419]    [c.393]    [c.400]    [c.400]    [c.120]    [c.839]    [c.635]    [c.58]    [c.874]    [c.170]    [c.298]    [c.301]    [c.170]    [c.298]    [c.441]    [c.413]    [c.140]    [c.124]   
Физика твердого тела Т.2 (0) -- [ c.288 ]



ПОИСК



Диполь-дипольное магнитное взаимодействие

Дипольное взаимодействие

Дипольное магнитное взаимодействие и обменное (кулоновское) взаимодействие

Магнитное взаимодействие

Переходы, индуцированные кориолисовым взаимодействием.-- Триплетсинглетные переходы.— Магнитные дипольные переходы Эффекты Зеемана и Штарка

См. также Дипольное магнитное взаимодействие Магнитное упорядочение



© 2025 Mash-xxl.info Реклама на сайте