Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон сохранения момента импульса дифференциальный

Применительно к механике сплошной среды, которая строится на основе ньютоновской механики, законы сохранения приводят к существенным результатам. Из закона сохранения массы следует уравнение неразрывности, т. е. необходимое условие существования движущейся и деформирующейся среды именно как сплошной. Из закона сохранения импульса следуют дифференциальные уравнения движения сплошной среды, которые являются основой расчета ее движения и деформации. Из закона сохранения момента импульса следует симметрия тензора напряжения, что существенно упрощает динамические уравнения сплошной среды. Закон сохранения энергии лежит в основе экстремальных принципов сплошной среды и энергетических методов расчета напряженно-дефор-мированного состояния.  [c.134]


В заключение укажем, что закон сохранения энергии-импульса (22.78) включает четыре уравнения, а закон сохранения момента импульса и скорости центра масс (22.83) —шесть уравнений. Физический смысл этих соотношений будет выяснен в связи с соответствующими интегральными законами сохранения. Однако, проследив происхождение дифференциальных законов сохранения, можно уже сейчас установить связь симметрий и соответствующих законов сохранения, совершенно аналогичную существующей в механике связи. Эта связь такова  [c.120]

В процессе осмысливания множества фактов, частных законов возникают обобщения, которые отражают в себе сущность и единство рассматриваемых явлений. Выдвигается система постулатов, выражающих ядро теории. Под ядром теории понимаются общие законы или принципы, которые определяют связи между физическими величинами, устанавливая изменение последних во времени и в пространстве. Как правило, ядро современной теории составляет система дифференциальных уравнений. Например, ньютонова механика основана на трех постулатах (законах Ньютона) и принципе суперпозиции сил. Все эти положения имеют математическую форму. В ядре физической теории особая роль принадлежит законам сохранения энергии, импульса, момента импульса, а также ряда других величин. Основные уравнения теории должны быть согласованы с законами сохранения — только при этом уравнения правильно отражают природу. В ядро входят положения об инвариантности основных уравнений по отношению к некоторым преобразованиям, основные константы теории.  [c.10]

Как известно из классической механики, систему из N частиц в случае пренебрежения их пространственной структурой (т. е. когда частицы рассматриваются как материальные точки) можно описать при помощи ЗМ дифференциальных уравнений, которым соответствуют 6Л интегралов движения, т. е. величин, сохраняющихся при изменениях, происходящих в системе. Полное число интегралов движения, естественно, задается тем, что в каждый момент времени система определяется ЗМ координатами и ЗА импульсами частиц (см., например, [1]). Среди 6А интегралов движения ) не все играют одинаковую роль. Чтобы выяснить эту роль, рассмотрим изолированную систему, т. е. систему, которая не подвержена действию внешних сил ). Для такой системы имеется десять интегралов движения, которые соответствуют физическим величинам, всегда сохраняющимся при любом произвольном взаимодействии между частицами системы во время движения. Эти величины, по крайней мере, в принципе можно измерить на опыте в рамках классической механики. 10 интегралов движения можно представить, в соответствии с их физическим смыслом, следующим образом 10 = 4-1-3-2. Цифра 4 соответствует закону сохранения  [c.9]


Прямая задача динамики для системы материальных точек сводится к решению системы ЗN дифференциальных уравнений, так как уравнение движения вида (11.1) для каждой из N точек системы дает в проекции на координатные оси три дифференциальных уравнения для координат точки хД/),>>Д ), ,(/). Строгое аналитическое решение удается найти лишь в исключительных случаях, поэтому обычно используют приближенные методы. Однако существует несколько строгих общих законов, которые хотя сами по себе и не позволяют в общем случае найти траектории отдельных точек системы, вместе с тем дают важную информацию о движении системы в целом. Это закон (или теорема) о движении центра масс и три закона изменения и сохранения импульса, момента импульса и механической энергии системы материальных точек. Их выводу и обсуждению посвящена настоящая глава.  [c.38]

Аналогичным образом щшводится к дифференциальному уравнению интегральный закон сохранения момента импульса. Нестандартным здесь является преобразование поверхностного интеграла в сбъемный, которое выподбшется с помощью отображения  [c.52]

Представим себе, что мы не знаем ни уравнений Ньютона, ни даже (что еще более сблизит эту ситуацию с той, которая имеет место в теории элементарных частиц) дифференциального и интегрального исчисления, но знаем законы сохранения энергии, импульса, момента и центра инерции. Ясно, что при таком состоянии теории тяготения в работах по небесной механике законы сохранения занимали бы главенствуюш,ее положение.  [c.281]

Метод, принятый в термодинамике неравновесных процессов, состоит прежде всего в том, что устанавливают различные законы сохранения микроскопической физики законы сохранения материи, импульса, момента импульса и энергии. В 2 этой статьи мы дадим формулы этих законов применительно к изотропным жидкостям, в которых имеют место тепло- и массоперенос и вязкое течение. В 4 и 5 рассмотрены эффекты, вызванные химическими реакциями, релаксационными процессами и действием внещних сил. С помощью законов сохранения описан закон энтропии Гиббса и введено уравнение баланса, которое содержит в себе как основной термин величину прироста энтропии. Выражение для прироста энтропии в этом случае является суммой членов, обусловливаемых теплопроводностью, диффузией, вязким течением и химическими реакциями ( 3—5). Каждый из этих членов состоит из произведения потока (например, потока тепла или диффузионного потока) и термодинамической силы (например, градиента температуры или градиента концентрации). Можно установить линейную зависимость (называемую феноменологическими уравнениями) между этими потоками и термодинамическими силами ( 6). Коэффициенты, появляющиеся в этих уравнениях, суть коэффициент теплопроводности, коэффициент диффузии и тому подобные. Между ними существует определенная зависимость как результат временной инвариантности (соотношение Онзагера) и возможности пространственной симметрии (принцип Кюри). Окончательно включением феноменологических уравнений в законы сохранения и законы энтропии а также с помощью приведенных ниже уравнений состояния ( 7) получают полную систему дифференциальных уравнений, описывающих поведение объекта.  [c.5]

Можно проверить, что получае1Мое из интегрального соотношения момента количества движения (2.10) векторное дифференциальное уравнение удовлетворяется тождественно в силу уравнения импульсов, т. е. закон сохранения момента количества движения для конечного объема, в общем случае независимый от интегрального закона сохранения количества движения, не дает в рассматриваемом случае идеальной среды локального соотношения между параметрами, отличающегося от уравнения импульсов.  [c.134]


Это равенство содержит только тензор Р и, тем самым, может рассматриваться как дифференциальное условие совместности закона сохранения момента испульса с законами сохранения массы и импульса, наложенное на тензор Р. Следущая теорема о симметрии тензора напряжений раскрывает содержаЫе этого условия,  [c.53]

Численное решение получаемых уравнений в форме системы обыкновенных дифференциальных уравнений (законов сохранения импульса для каждого узла — сосредоточенной массы) осуществляется в виде явной схемы по времени (3.2.5). При этом по заданным узловым скоростям с предыдущего полуцелого временного слоя определяются приращения в узлах, (Аеар)е в элементах, А ,- на узловых линиях стыковки элементов. Далее по реологическим соотношениям упруговязкопластического деформирования вычисляются напряжения в элементах и моменты в узловых линиях затем рассчитываются обобщенные внутренние силы в узлах используя уравнения движения, определяются ускорения в узлах и новые скорости для следующего шага по А . Таковы главные этапы алгоритма явной однородной схемы расчета дискретной модели.  [c.97]

Полученные выражения (8) и (11) (их называют каноническими) для локализации энергии-импульса и момента не однозначны, если исходить только из требования выполнения дифференциальных законов сохранения и получения правильных интегральных величин. Если добавить, скажем, к канонич. тензору энергии-импульса дивергенцию нек-рого тензора антисимметричного в з и ( з  [c.426]


Смотреть страницы где упоминается термин Закон сохранения момента импульса дифференциальный : [c.120]    [c.266]   
Основные принципы классической механики и классической теории поля (1976) -- [ c.120 ]



ПОИСК



Дифференциальные законы сохранения

Закон моментов

Закон сохранения

Закон сохранения импульса

Закон сохранения момента

Закон сохранения момента импульса

Закон сохранения момента импульса энергии-импульса дифференциальный

Момент импульса

Сохранение

Сохранение импульса

Сохранение импульса и момента импульса

Сохранение момента импульса



© 2025 Mash-xxl.info Реклама на сайте