Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон сохранения момента импульса энергии-импульса дифференциальный

В заключение укажем, что закон сохранения энергии-импульса (22.78) включает четыре уравнения, а закон сохранения момента импульса и скорости центра масс (22.83) —шесть уравнений. Физический смысл этих соотношений будет выяснен в связи с соответствующими интегральными законами сохранения. Однако, проследив происхождение дифференциальных законов сохранения, можно уже сейчас установить связь симметрий и соответствующих законов сохранения, совершенно аналогичную существующей в механике связи. Эта связь такова  [c.120]


В процессе осмысливания множества фактов, частных законов возникают обобщения, которые отражают в себе сущность и единство рассматриваемых явлений. Выдвигается система постулатов, выражающих ядро теории. Под ядром теории понимаются общие законы или принципы, которые определяют связи между физическими величинами, устанавливая изменение последних во времени и в пространстве. Как правило, ядро современной теории составляет система дифференциальных уравнений. Например, ньютонова механика основана на трех постулатах (законах Ньютона) и принципе суперпозиции сил. Все эти положения имеют математическую форму. В ядре физической теории особая роль принадлежит законам сохранения энергии, импульса, момента импульса, а также ряда других величин. Основные уравнения теории должны быть согласованы с законами сохранения — только при этом уравнения правильно отражают природу. В ядро входят положения об инвариантности основных уравнений по отношению к некоторым преобразованиям, основные константы теории.  [c.10]

Применительно к механике сплошной среды, которая строится на основе ньютоновской механики, законы сохранения приводят к существенным результатам. Из закона сохранения массы следует уравнение неразрывности, т. е. необходимое условие существования движущейся и деформирующейся среды именно как сплошной. Из закона сохранения импульса следуют дифференциальные уравнения движения сплошной среды, которые являются основой расчета ее движения и деформации. Из закона сохранения момента импульса следует симметрия тензора напряжения, что существенно упрощает динамические уравнения сплошной среды. Закон сохранения энергии лежит в основе экстремальных принципов сплошной среды и энергетических методов расчета напряженно-дефор-мированного состояния.  [c.134]

Прямая задача динамики для системы материальных точек сводится к решению системы ЗN дифференциальных уравнений, так как уравнение движения вида (11.1) для каждой из N точек системы дает в проекции на координатные оси три дифференциальных уравнения для координат точки хД/),>>Д ), ,(/). Строгое аналитическое решение удается найти лишь в исключительных случаях, поэтому обычно используют приближенные методы. Однако существует несколько строгих общих законов, которые хотя сами по себе и не позволяют в общем случае найти траектории отдельных точек системы, вместе с тем дают важную информацию о движении системы в целом. Это закон (или теорема) о движении центра масс и три закона изменения и сохранения импульса, момента импульса и механической энергии системы материальных точек. Их выводу и обсуждению посвящена настоящая глава.  [c.38]


Представим себе, что мы не знаем ни уравнений Ньютона, ни даже (что еще более сблизит эту ситуацию с той, которая имеет место в теории элементарных частиц) дифференциального и интегрального исчисления, но знаем законы сохранения энергии, импульса, момента и центра инерции. Ясно, что при таком состоянии теории тяготения в работах по небесной механике законы сохранения занимали бы главенствуюш,ее положение.  [c.281]

Метод, принятый в термодинамике неравновесных процессов, состоит прежде всего в том, что устанавливают различные законы сохранения микроскопической физики законы сохранения материи, импульса, момента импульса и энергии. В 2 этой статьи мы дадим формулы этих законов применительно к изотропным жидкостям, в которых имеют место тепло- и массоперенос и вязкое течение. В 4 и 5 рассмотрены эффекты, вызванные химическими реакциями, релаксационными процессами и действием внещних сил. С помощью законов сохранения описан закон энтропии Гиббса и введено уравнение баланса, которое содержит в себе как основной термин величину прироста энтропии. Выражение для прироста энтропии в этом случае является суммой членов, обусловливаемых теплопроводностью, диффузией, вязким течением и химическими реакциями ( 3—5). Каждый из этих членов состоит из произведения потока (например, потока тепла или диффузионного потока) и термодинамической силы (например, градиента температуры или градиента концентрации). Можно установить линейную зависимость (называемую феноменологическими уравнениями) между этими потоками и термодинамическими силами ( 6). Коэффициенты, появляющиеся в этих уравнениях, суть коэффициент теплопроводности, коэффициент диффузии и тому подобные. Между ними существует определенная зависимость как результат временной инвариантности (соотношение Онзагера) и возможности пространственной симметрии (принцип Кюри). Окончательно включением феноменологических уравнений в законы сохранения и законы энтропии а также с помощью приведенных ниже уравнений состояния ( 7) получают полную систему дифференциальных уравнений, описывающих поведение объекта.  [c.5]

Полученные выражения (8) и (11) (их называют каноническими) для локализации энергии-импульса и момента не однозначны, если исходить только из требования выполнения дифференциальных законов сохранения и получения правильных интегральных величин. Если добавить, скажем, к канонич. тензору энергии-импульса дивергенцию нек-рого тензора антисимметричного в з и ( з  [c.426]


Смотреть страницы где упоминается термин Закон сохранения момента импульса энергии-импульса дифференциальный : [c.266]   
Основные принципы классической механики и классической теории поля (1976) -- [ c.119 ]



ПОИСК



Дифференциальные законы сохранения

Закон моментов

Закон сохранения

Закон сохранения импульса

Закон сохранения импульса — энергии

Закон сохранения момента

Закон сохранения момента импульса

Закон сохранения момента импульса дифференциальный

Закон сохранения момента импульса и закон сохранения энергии

Закон сохранения момента импульса энергии

Закон сохранения энергии

Импульс энергию

Импульс, момент импульса и энергия

Момент импульса

СОХРАНЕНИЕ ЭНЕРГИИ И ИМПУЛЬСА

Сохранение

Сохранение импульса

Сохранение импульса и момента импульса

Сохранение момента импульса

Сохранение энергии

Энергия. Момент импульса



© 2025 Mash-xxl.info Реклама на сайте