Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бернулли-Эйлера-----, 385 теорема

Качественная сторона возникновения подъемной силы объясняется тем, что скорость при Г<0 на верхней части окружности будет больше, чем на нижней части. Отсюда по теореме Бернулли—Эйлера  [c.132]

Вопрос этот был исследован также Ламбом ). Он рассматривает обобщенное плоское напряжение ( 94) и берет случай, когда к бесконечной балке приложен ряд сосредоточенных грузов на равных расстояниях друг от друга. Он находит для прогиба выражение, состоящее из трех членов. Первый из них совпадает с тем, который дает теорема Бернулли-Эйлера. Дополнительный прогиб, выражаемый вто-  [c.386]


Для пары О по теореме Бернулли-Эйлера получаем такое выражение  [c.387]

Бернулли-Эйлера--, 386 теорема  [c.669]

Вместе с тем появились и существенные дополнения, среди которых следует отметить написанную К. А. Лурье новую (тридцать первую) главу, содержащую изложение основ специальной теории относительности. В заново написанных параграфах получили освещение вопросы полета ракеты простейшей схемы, теории колебаний систем с произвольным конечным числом степеней свободы, применения общих теорем динамики систем материальных точек к сплошным средам (теоремы Эйлера, Бернулли, Борда), а также к выводу общих дифференциальных уравнений динамики сплошных сред и выражения мощности внутренних сил в сплошной среде. Последнее в случае сред с внутренним трением позволяет глубже судить о важном для механики понятии потерь (диссипации) механической энергии при движении среды.  [c.7]

Теорему Бернулли совместно с теоремой Эйлера, изложенной в 110, можно применить для вывода теоремы Борда (1733—1792)—Карно о потере механической энергии потока жидкости при внезапном его расширении (рис. 328). Теорема эта служит аналогом теоремы Кар-  [c.250]

Заметим в заключение, что данное уравнение мы получили, пользуясь началом Даламбера, поскольку для вывода его было применено уравнение Эйлера. Ранее, рассматривая установившееся движение (см. 3-12), мы выводили уравнение Бернулли, исходя из теоремы изменения кинетической энергии. Вместе с тем уравнение Бернулли для установившегося движения легко может быть получено и из уравнения (9-15), если в него подставим Ц = 0.  [c.343]

Интеграл Бернулли мог быть выведен и непосредственно из уравнения Эйлера (5) без преобразования его к форме Громека — Ламба (7). Действительно, переписывая в условиях теоремы уравнение (5) в виде  [c.93]

Уравнение сохранения энергии. Уравнение Бернулли. Уравнение Эйлера. Примеры на применение теоремы Эйлера. Коэффициент полезного действия воздушно-реактивного двигателя  [c.16]

В трактате Юнга единственное описание результатов эксперимента, касающихся высоты модуля, содержалось в Комментарии, следующем за теоремой о поперечных колебаниях призматических и цилиндрических стержней (см. Young [1807,1], 398, т. II, стр. 84). При рассмотрении этой задачи Юнг использует разложение искомой функции в ряд при решении уравнения Бернулли — Эйлера для балок. Это позволило ему вывести зависимость между высотой модуля и частотой колебаний для консольных и свободно опертых балок. Приводим указанное описание.  [c.255]


Уравнения гидродинамики и их интегралы. Уравнения гидродинамики в форме Эйлера. Теоремы Бернулли и Лагранжа. Сообщение движения жидкости импульсом. Теорема Томсона. Гельмгольцев принцип сохранения напряжения вихревой нити. Основные принципы динамики, отнесенные к жидкой массе. Определенность гидрокннетической задачи.  [c.322]

Анализируя результаты многолетнего творчества Вариньона, можно отметить явную тягу этого математика к прикладным задачам той эпохи. Даже его чисто математические работы 1699, 1706 гг. были ориентированы на развитие математического аппарата механики. Первый этап деятельности Вариньона (ориентировочно 1683-1692 гг.), связанный с освоением классической геометрии и механики предшественников, был статическим . Изданием своего Проекта Вариньон не только подвел итог многовекового развития статики-механики, но и заложил основы для дальнейшего совершенствования ее математического аппарата (векторные свойства сил и движений, правило параллелограмма, теорема Вариньона) в трудах Д. Бернулли, Эйлера, Монжа, Л. Карно, Боссю, Лагранжа, Пуансо. Переписка Вариньона с Лейбницем и И. Бернулли, знакомство с трудами Пьютопа и Анализом бесконечно малых для исследования кривых линий Лопиталя [203], полемика с Роллем сделали Вариньона активным проводником идей нового математического анализа в механических приложениях.  [c.204]

Выражение под знаком градиента есть функция, зависящая толь ко от времени, и следовательно, справедливо равенство (3.5). Если дополнительно к условиям теоремы 2 предположить, чт движение жидкости установившееся, т.е. 5ф/Й s О, то интегра Коши (3.5) совпадет с интефалом Бернулли (3.3). Функцию g(0 этом случае следует рассматривать как постоянную во всей облас ти движения. Полученный интефал называется интефалом Бер нулли—Эйлера и отличается от интефала Бернулли тем, что по стоянная в правой части не зависит от выбора линии тока. j В качестве примера рассмотрим задачу об истечении несжи-1 маемой идеальной жидкости из отверстия малой площади в сосуде (рис. 64). Пусть уровень жидкости в сосуде Н, S — площадь поверхности цилиндрического сосуда, s — площадь сечения от-. верстия на глубине Н. Давление воздуха (поверхностные силы на свободной поверхности жидкости) равно р . Поле массовых сил есть поле силы тяжести f=-jge , — орт вертикали. Рассмотрим процесс истечения жидкости как безвихревое установившееся течение идеальной несжимаемой жидкости, прене гая понижением уровня жидкости на изучаемом интервале времени. Эти условия будут выполняться с достаточной степенью точности, если S s-и если с момента начала течения прошло некоторое время и тече- ние приобрело установившийся характер. Обозначим скорость понижения уровня жидкости в сосуде через v, а скорость истечения из отверстия — через V. Уравнение неразрывности имеет вид = sV, г интефал Бернулли—Эйлера представляется в форме  [c.262]

Теорема об изменении кинетической энергии или, как ее ранез называли, теорема живых сил была сформулирована Иваном Бернулли (1667— 1748) и Даниилом Бернулли (1700— 1782). Теорема об изменении момента количества движения установлена почти одновременно (1746) Эйлером и Даниилом Бернулли.  [c.5]

Определение величины и направления подъемной силы сводится к нахол<дению главного вектора сил давления, в случае обтекания замкнутого контура идеальной жидкостью перпендикулярных к поверхности контура, что можно сделать с помощью теоремы количества движения (теорема Эйлера, ПО) и кинетической энергии (теорема Бернулли).  [c.248]

Патрик Дарси, ирландец, достигший во французской армии чина фельдмаршала, а во французской науке — членства Парижской академии наук, был теоретиком и нрактиком-артиллеристом, изучал и небесную механику— теорию Луны. Существенное место в истории механики занимает его работа Динамическая задача , к рассмотрению которой мы переходим В ней доказывается теорема, дающая обобщение соответствующей теоремы Ньютона при движении системы материальных точек вокруг неподвижного центра сумма произведений вида тгОг, где Oi — площадь, описываемая радиусом-вектором точки с массой rrii, и все О берутся в одной и той же плоскости проекций, пропорциональна времени. Это и есть, собственно, обобщенный закон площадей в интегральной форме, а теорема Д. Бернулли и Эйлера дает тот же закон в дифференциальной форме. В отличие от Эйлера и Бернулли,  [c.126]


Лагранж в 60-е годы отправлялся от этих работ в своих исследованиях колебаний системы конечного числа материальных точек. Ему было нетрудно придать утверждению Д. Бернулли форму математической теоремы, так как в 40-е годы XVIII в. Эйлер показал, как проинтегрировать линейное дифференциальное уравнение произвольного порядка с достоянными коэффициентами, а Даламбер — как интегрируются системы таких уравнений. Это позволяло просто сослаться на то, что общий интеграл дифференциальных уравнений описывающих малые колебания, является суммой слагаемых, каждое из которых соответствует малым изохронным колебаниям простого маятника. При этом, однако, надо было допустить, что корни алгебраического уравнения (уравнения частот, или векового уравнения ), которое попутно приходится решать, вещественны, положительны и не равны между собой. Однако Лагранж этим не ограничился и провел все исследование в общем виде, используя открытую им форму уравнений движения — уравнения Лагранжа второго, рода. В первом издании Аналитической механики Лагранжа (1788 г.) эти результаты даны в улучшенной редакции, в окончательном виде они вошли во. второе издание Аналитической механики (т. I., 1813 г.).  [c.265]

В механике жидкости и газа, напротив, был получен ряд важных общих результатов. Так, было введено четкое понятие давления в идеальной жидкости (И. Бернулли, Л. Эйлер), разработаны некоторые общие положения гидравлики идеальной жидкости, в том числе получены уравнение Бернулли (Д. и И. Бернулли, Л. Эйлер) и теорема Борда. Наконец, благодаря главным образом трудам JI. Эйлера были заложены основы гидродинамики идеальной (капельной и сжимаемой) жидкости. Замечательно, что уравнения гидродинамики были построены Эйлером при помощи вполне современного континуального подхода. Тут к его результатам трудно что-либо добавить ив 47 наши дни (конечно, если не касаться термодинамической стороны вопроса). Однако блестящая по стройности построения общая гидродинамика идеальной жидкости оказалась в XVIII в. лигпенной каких-либо приложений, если не считать акустики, опиравшейся в то время на представления И, Ньютона, эквивалентные предположению об изотермичности процесса распространения звука. Опередивйхие более чем на век требования времени, континуальные представления Эйлера в гидродинамике идеальной жидкости нуждались лишь, казалось бы, в небольшом обобщении — последовательном введении касательных напряжений,— для того чтобы обеспечить построение основ всей классической механики сплошной среды. Но, по-видимому, именно опережение Эйлером своей эпохи и практических запросов того времени повлекло за собой то, что толчок к дальнейшему развитию механики сплошной среды дали только через три четверти века феноменологические исследования, основанные на молекулярных представлениях. Чисто континуальный подход, основанный на идеях Эйлера и Коши, был последовательно развит англ [йской школой в 40-х годах и завоевал полное признание только в последней трети XIX в.  [c.47]

Согласно теореме Бернулли, в тех точках потока, где понижается скорость, должно возрастать давление — результат, который вначале казался парадоксальным. Действительно, к это же время в связи как с ньютоновскими воззрениями на давление жидкости на обтекае.мое тело, так и с исследованиями самого Бернулли о давлении жидкости на преграду, прочно установился как будто противоположный взгляд о возрастании давления жидкости с возрастанием ее скорости. Эйлер, которому, кстати говоря, мы обязаны современной формулировкой теоремы Бернулли (напоминаем, что Эйлер первый ввел в гидродинамику четкое понятие давления), пояснил кажущуюся парадоксальность теоремы Бернулли следующими словами вся сложность понимания этого предложения устраняется, если считать, что здесь сравнение производится не между скоростями двух разных течений, а между разными скоростями вдоль данной струи, которая обтекает поверхность тела (курсив наш) — пояснение, заслуживающее быть приведенны.м в любо.м современном руководстве по гидродинамике.  [c.23]

Основываясь на законе сохранения живой силы, открытом для частного случая колебания маятника еще Гюйгенсом и получившем широ-кое распространение в первой половине XVIII в., Бернулли впервые изложил в Гидродинамике теорему, устанавливающую связь между давлением, уровнем и скоростью движения тяжелой жидкости. Теорема эта является фундаментальной теоремой гидродинамики. Согласно этой теореме, если в точках потока, находящихся на одном уровне, понижается скорость, то доллсно возрастать давление, — результат, который вначале казался парадоксальным. Действительно, в связи с ньютоновскими воззрениями па давление жидкости на обтекаемое тело, да и исследованиями самого Бернулли о давлении жидкости на преграду прочно установился взгляд о возрастании давления жидкости на тело при увеличении скорости набегания ее на тело. Это противоречие было легко устранено Эй(.аером, который с бо.пьшой отчетливостью разъяснил, что теорема Бернулли как гидродинамическая интерпретация закона живых сил верна лишь в том случае, если следить за движением частиц одной и той же струи. Принадлежащее Эйлеру ноясие1ше заключалось в следующих словах вся сложность понимания этого предложения устраняется, если считать, что здесь сравнение производится не между скоростями двух разных течений, а между разными скоростями вдоль данной струи, которая обтекает поверхность тела . Эти слова Эйлера заслуживают упоминания в любом руководстве но гидродинамике, так как и сейчас эта важная сторона теоремы Бернулли часто ускользает от учащегося.  [c.22]

Дальнейшее развитие учения о движении жидкости и обобщение законов гидростатики дали возможность членам Российской академии наук в Санкт-Петербурге Леонарду Эйлеру (1707—1783 гг.) и Даниилу Бернулли (1700—1782 гг.) разработать теоретические основы гидравлики и, таким образом, создать прочную теоретическую базу, позволившую выделить гидравлику в отдельную отрасль науки. Д. Бернулли, работая над проблемами математики и механики, посвятил ряд мемуаров вопросам движения и сопротивления жидкости. В 1738 г. им опубликован капитальный труд по гидродинамике, в предисловии к которому автор указал, что его труд полностью принадлежит России, и прежде всего ее Академии наук. В этой работе Бернулли дал метод изучения движения жидкости, ввел понятие гидродинамика и предложил известную теорему о запасе энергии движущейся частицы жидкости. Эта теорема носит теперь имя Д. Бернулли и лежит в основе ряда разделов гидравлики. Л. Эйлер первый дал ясное определение понятия давления жидкости и, пользуясь им, в 1755 г. вывел основные дифференциальные уравнения движения некоторой воображаемой жидкости, лишенной трения, так называемой идеальной жидкости. Эти уравнения впоследствии были названы его именем. На основе учения Л. Эйлера возникла родственная гидравлике наука — гидромеханика, также рассматривающая законы движения жидкостей, но на основе только математического анализа, тогда как гидравлика для изучения отдельных вопросов широко использует и экспериментальный метод.  [c.7]


Рассмотренные две важные теоремы называются соответственно теоремой о движении центра тяжести и теоремой моментов в относительном движении вокруг центра тяжести. Первая из них была дана Ньютоном в качестве четвертого следствия к третьему закону движения и позднее была обобщена Даламбером и Монтюкла. Вторая же, более поздняя, по-видимому, была доказана одновременно Эйлером, Бернулли и Д Арси (D A г s у).  [c.73]

В этом равенстве трудно не узнать теорему об изменении кинетической энергии, авторство которой традиционно связывается с именем Лагранжа. Еще раньше Лагранжа эту теорему, как следствие другой теоремы, сформулировал Эйлер [92, с. 123 Предложение 19, Следствие 1] в знаменитой Механике 1736 г. Однако Клеро писал свою работу раньше. А переписка Клеро с Эйлером, содержащая 61 письмо, началась с 1741 г. Как уже отмечалось, до Эйлера этим результатом пользовались П. и Д. Бернулли, Вариньон, Лейбниц и Пьютон.  [c.255]

Теорема 2 объединяет числа Эйлера и Бернулли в одну эследовательность  [c.123]


Смотреть страницы где упоминается термин Бернулли-Эйлера-----, 385 теорема : [c.385]    [c.386]    [c.71]    [c.379]    [c.318]    [c.317]   
Математическая теория упругости (1935) -- [ c.0 ]



ПОИСК



Бернулли

Бернулли теорема

Бернулли-Эйлера-----, 385 теорема о трех моментах

Теорема Эйлера

Эйлер

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте