Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Белый Износостойкость

ВЛИЯНИЕ ЛЕГИРУЮЩИХ И МОДИФИЦИРУЮЩИХ ЭЛЕМЕНТОВ НА СВОЙСТВА БЕЛЫХ ИЗНОСОСТОЙКИХ ЧУГУНОВ  [c.50]

Известно несколько десятков марок легированных белых износостойких чугунов 16, 78]. Такое разнообразие составов износостойких чугунОв требует подробной информации о свойствах и эксплуатационных характеристиках сплавов, необходимой для правильной ориентировки при выборе материала для конкретных деталей. Отсутствие классификации износостойких хроми-  [c.28]


Белые чугуны по химическому составу разделяют на нелегированные и легированные никелевые и бористые (износостойкие), высокохромистые (износостойкие и теплостойкие), высококремнистые (кислотоупорные),  [c.27]

Белые чугуны являются достаточно износостойким материалом для изготовления различных деталей, работающих в условиях абразивного износа.  [c.33]

Аналогичное влияние на структуру белого чугуна оказывают добавки марганца. Такие чугуны характеризуются достаточно высокой износостойкостью, но плохо противостоят многократным ударным нагрузкам. Следует признать, что возможности применения марганцевых и хромомарганцевых белых чугунов в качестве износостойких еще исследованы не в полной мере.  [c.34]

Белый чугун по сравнению с серым обладает более высокой твердостью и износостойкостью, так как весь имеющийся в нем углерод находится в виде химических соединений —карбидов с металлами (Fe, Сг, W и др.), а мягкая неметаллическая составляющая (графит), отсутствует. В связи с этим белый чугун применяют как конструкционный материал для работы в условиях абразивного изнашивания.  [c.50]

Имеются сведения, что добавка к белым чугунам титана (одного или вместе с бором) способствует повышению их износостойкости в 1,5—2,0 раза.  [c.62]

Присадка в белый чугун 0,20—0,35% Т1 повышает коэффициент относительной износостойкости до 2,57—3,24 (рис. 8). Максималь-  [c.62]

При легировании белого чугуна ванадием обеспечивается получение более высокой твердости (по сравнению с твердостью чугуна с присадкой хрома). В зависимости от содержания марганца и других элементов, а также от термической обработки структура металлической основы может быть аустенитной, ферритной или мартенситной. Эти чугуны обладают сравнительно хорошей износостойкостью, однако при аустенитной или ферритной матрице главным их преимуществом является относительно высокая для износостойких чугунов пластичность.  [c.65]

Можно ожидать получение высокой износостойкости белого чугуна при добавке бора совместно с хромом (высокое содержание) или никелем.  [c.69]

Исследованиями установлено, что влияние никеля на твердость и износостойкость белого чугуна подобно влиянию марганца. Особенно сильное действие никель оказывает при содержании до 3%. В последние годы чаще практикуют присадку в белый чугун никеля совместно с хромом или бором.  [c.73]

С увеличением содержания никеля твердость чугуна возрастает (HV 6,30—6,83 кН/мм ), микротвердость цементита не изменяется а микротвердость аустенита повышается до 5,23 кН/мм за счет присутствия мартенсита (рис. 16). Коэффициент относительной износостойкости чугуна составляет 2,55—3,04, т. е. несколько выше по сравнению со значением для обычного белого чугуна. Ударе-устойчивость возрастает незначительно.  [c.74]


Исследования белых чугунов с содержанием 0,09—1,21% Мо показали, что молибден полностью сосредотачивается в карбидной фазе в феррите он не обнаружен. Износостойкость серого чугуна при введении 1,5% Мо увеличивается в 16 раз.  [c.74]

Теллур можно рекомендовать как один из наиболее эффективных модификаторов для получения износостойкого белого чугуна. Желательно проверить его влияние на свойства чугуна, легированного хромом или марганцем, а также совместно с алюминием или церием.  [c.77]

Легированием медью можно повысить твердость и износостойкость белого чугуна. Больший эффект можно ожидать при введении меди в сочетании с другими легирующими элементами (никелем, хромом, ванадием).  [c.78]

СРАВНИТЕЛЬНЫЕ ИССЛЕДОВАНИЯ ИЗНОСОСТОЙКИХ БЕЛЫХ ЧУГУНОВ,  [c.86]

Обычные белые и легированные чугуны, являясь износостойким материалом, чрезвычайно чувствительны к ударным нагрузкам, Значительное количество описанных в литературе чугунов с различным типом легирования весьма затрудняет их выбор для деталей машин.  [c.86]

В первой группе представлены обычные доэвтектические белые чугуны (см. табл. 1). Они характеризуются сравнительно низким сопротивлением изнашиванию и многократным ударным нагрузкам. Небольшое повышение коэффициента относительной износостойкости (3,18) отмечено у чугуна, модифицированного висмутом, бором и алюминием (плавка № 185). Это может быть следствием совместного влияния бора и алюминия, так как модифицирование висмутом и бором (плавка № 159) не дает повышения сопротивления изнашиванию.  [c.87]

Нелегированный и низколегированный белый износостойкий чугун (табл. 6). Структура нелегированного и низколегированного белого чугуна состоит из перлитной матрицы и карбидов типа Fej или (Ре, Сг)з С. Он уступает по износостойкости легированному белому чугуну, особенно высокохромистому.  [c.176]

Сравнение режима резанга чугуна, легированного алюминием, с шаровидным графитом, имеющего наибольщую твердость 340 НВ (37 HR g), с режимом резания белого износостойкого чугуна ЧН4Х2 твердостью 54 HR , показывает, что при 60-минутной стойкости резца из ВК2 скорость резания их примерно одинакова и составляет менее 6 м/мин.  [c.665]

Белые и отбеленные чугуны. Белый чугун,. чакалииаемый при отливке и имеющий весь углерод в связанном состоянии, характери эуется высокой твердостью (трудно обрабатывается ре.занием), высокой износостойкостью и жаростойкостью, высоким сопротивлением коррозии.  [c.27]

Белыми называют чугуны в которых углерод находится в связанном состоянии в виде цементита РезС. Эти чугуны, фазовые превращения которых протекают согласно диаграмме Ре-С, подразделяются на доэвтектические, эвтектические и заэвтектические. Из-за больщого количества це.ментита белые чу гуны имеют высокую твердость (НВ4500...5500 МПа), хрупкие и практически не поддаются обработке резанием, поэтому в качестве конструкционных материалов практически не применяются. Их можно применять аля деталей от которых требуется высокая износостойкость поверхности. Например, изготавливают шары шаровой мельницы для раз.мола руды и минералов.  [c.56]

Высокохромистые чугуны марок 4X28, 4X32 обладают высокой химической стойкостью в ряде агрессивных сред азотной, серной, фосфорной кислотах, в растворах щелочей, солей, морской воде и др. Хром при таких концентрациях (28%, 32%) образует защитную шюнку СггОз. Микроструктура этих чугунов соответствует микроструктуре доэвтектических белых чугу-нов Наряду с высокой коррозионной стойкостью, чугун имеет высокую износостойкость, жаропрочность, окалиностойкость. При 30% хрома она достигает 1200 с, при 1100 с детали из этого чугуна могут работать до 3000 часов. Прочность не изменяется до 500 С, затем резко падает.  [c.62]

Отбеленные чугуны используют для изготовления отливок, поверхность которых состоит из белого чугуна, а внутренняя область - из серого или н1,1сокопрочн6го чугуна. Отбеленные чугуны содержат 2,8-3,6% углерода и пониженное содержание кремния - 0,5-0,8%. Отбеленные чугуны имеют высокую поверхностную твердость (950-1000 НВ) (ср. с данными табл. 1.4) и очень высокую износостойкость. Их иегюльзуют для изготовления прокатных валков, вагонных колес с отбеленным ободом, шаров для niapoBbix мельниц и других деталей, работающих в тяжелых условиях высоких динамических нагрузок с трением качения и скольжения.  [c.20]


Для деталей, работаюпщх в условиях абразивного износа, используют белые чугуны, легированные хромом и марганцем, а также хромом и никелем (нихард). Отлипки из этих чугунов отличаются высокой твердостью и износостойкостью.  [c.20]

М. Г. Гедбергом и автором установлено, что низкая износостойкость обычного белого и низколегированных белых чугунов в большой степени определяется значительным различием микротвердости структурных составляющих. Так, микротвердость эвтектоида (продуктов распада избыточного и эвтектического цементита) — обычно троостита или трооститовидного перлита — не превышает 3500 Н/мм , микротвердость же эвтектического цементита в основном находится в пределах 7300—10 800 Н/мм . Такая значительная разница в твердости основных структурных составляющих белого чугуна приводит при режущем или парапающем воздействии твердых частиц к преждевременному изнашиванию поверхностей эвтек-тоидных областей, образованию значительного микрорельефа на поверхности трения и последующему хрупкому разрушению выступающих цементитных участков.  [c.10]

В процессе трения в поверхностных слоях металлов происходят сложные явления, связанные с перераспределением химических элементов, структурными превращениями, измельчением отдельных фаз, образованием вторичных структур и т. д. Возникающие при этом слои измененной структуры обычно состоят из слаботра-вящихся белых фаз и зон повышенной травимости. Характер их распределения, структурное строение и фазовый состав оказывают большое влияние на износостойкость деталей.  [c.21]

М. Е. Гарбер считает, что в белых чугунах количество остаточного аустенита должно быть минимально, так как присутствие устойчивого аустенита всегда снижает сопротивление изнашиванию [22]. Для получения максимальной износостойкости следует стремиться к получению белых чугунов с мартенситной основой, однако следует иметь в виду, что последняя содержит значительное количество остаточного аустенита. В условиях абразивного изнашивания при значительных ударных нагрузках и повторяющихся высоких напряжениях, испытываемых одним и тем же объемом изнашиваемого металла, лучшей может быть аустенитная металлическая основа.  [c.33]

Проведенное автором сравнительное исследование низкоуглеродистых белых чугунов с 18-ю различными легирующими и модифицирующими элементами (кремний, марганец, хром, титан и др.) как каждого в отдельности, так и в виде комплексных присадок дало основание подразделить большую их часть на следующие группы по признаку ловышения износостойкости  [c.33]

Структура нелегированного и низколегированного белого чугуна состоит из перлитной матрицы и карбидов типа РезС или (Fe, Сг)зС. Такой чугун имеет высокую твердость, не поддается при обычных режимах механической обработке и обладает повышенной хрупкостью. Износостойкость чугуна доэвтектического состава (2,8—3,5% С) лишь на 50—80% выше по сравнению с углеродистыми сталями. Большая склонность белого чугуна и отдельных его структурных составляющих (особенно цементита) к хрупкому разрушению часто является причиной снижения сопротивления абразивному изнашиванию в условиях работы с ударом.  [c.50]

Износостойкость белого чугуна при абразивном воздействии зависит от его механических свойств и свойств отдельных структурных составляющих (микротвердости, прочности, вязкости, формы, взаимного расположения и связи, количественного соотношения). Основные структурные составляющие белого чугуна распола гаются по возрастанию микротвердости в следующем порядке эвтектоид (перлит, сорбит, троостит), аустенит, мартенсит, цементит, легированный цементит, карбиды хрома, воль ама, ванадия и других элементов, бориды.  [c.51]

Управление первичной кристаллизацией может способствовать получению белого чугуна с высокой износостойкостью и удароуС тойчивостью. Малая степень переохлаждения приводит к образо-ванию коротких и широких дендритов аустенита, а также грубых пластинок цементита. Большая степень переохлаждения способст  [c.51]

В процессе графитизирующего отжига белого чугуна концентрация марганца в кристаллах цементита непрерывно возрастает. Это объясняется изменением при отжиге его концентрации в граничных участках аустенита, что в свою очередь связано с разложением цементита. После отжига аустенитный марганцовистый чугун (9,40 и 10,45% Мп) приобретает устойчивую структуру мартенсита. Фазовых превращений не наблюдается. Повышение концентрации марганца до 4% увеличивает твердость и износостойкость белого чугуна. При дальнейшем увеличении содержания марганца до 14,5 7о эти свойства ухудшались.  [c.55]

Таким образом, белый чугун можно легировать хромом (до 3,8%) для повышения удароустойчивости. Снижение износостойко- ти можно объяснить растворением хрома в цементите, что приво 1ИТ к его охрупчиванию, а также малым упрочнением дендритов эывшего аустенита.  [c.61]

Модифицирование белого чугуна бором не увеличивает его со- противления абразивному изнашиванию. Некоторое увеличение относительной износостойкости (2,20—2,45) наблюдали при содержании более 0,2% В, Удароустойчивость была в пределах значений для обычного белого чугуна и значительно снижалась при увеличении содержания бора более 0,3%. Модифицирование бором не охрупчивает белый чугун.  [c.68]

Сурьма практически не изменяет твердость белого чугуна и микротвердость цементита и эвтектоида (рис. 13). Модифицирование сурьмой не сопровождается увеличением износостойкости. Отмечено некоторое увеличение удароустойчивостн при содержании 0,005% Sb.  [c.70]

Присутствие церия существенно не влияет на твердость чугуна и микротвердость эвтектоида (рис. 15). При содержании 0,049— 0,071% Се отмечено увеличение микротвердости цементита до 11,69—12,29 кН/мм2 и коэффициента относительной износостойко- " сти до 2,22—2,87. Удароустойчивость возрастает нри содержании 0,024% Се и затем снижается до уровня, соответствующего нелегированному белому чугуну. Очевидно, это объясняется отложением цериевых соединений как поверхностно-активных веществ на границе аустенит — цементит, увеличивая тем самым охрупчивание  [c.72]


При максимальной концентрации кальция наблюдали снижение микротвердости эвтектоида и цементита, а также твердости чугуна и значительное повышение удароустойчивости (рис. 20). Очевидно, оптимальное значение сопротивления ударным нагрузкам белого чугуна можно получить при наличии мелкораздробленного эвтеК тоида и отсутствии сплошных полей структурно-свободного цемен тита при невысокой их твердости. Модифицирование кальцием спо собствует увеличению коэффиицента относительной износостойкости до 2,67.  [c.79]

Из всех исследованных легирующих и модифицирующих элементов барий наиболее эффективно повышает удароустойчивость. Коэффициент относительной износостойкости также значительно-повышается и достигает 3,79—3,80. Следовательно, сочетание высокой стойкости белого чугуна к абразивному изнашиванию в условиях ударных нагрузок можно получить значительным измельчением дендритов бывшего аустенита, уменьшением количества эвтектики и ее равномерным распределением в междендритных пространствах. Твердость цементита при этом должна быть минимальной.  [c.80]


Смотреть страницы где упоминается термин Белый Износостойкость : [c.33]    [c.741]    [c.2]    [c.34]    [c.53]    [c.61]    [c.65]    [c.271]    [c.117]    [c.218]    [c.92]   
Материалы в машиностроении Выбор и применение Том 4 (1989) -- [ c.172 ]



ПОИСК



Белов

Белый

Износостойкость

Ч износостойкий



© 2025 Mash-xxl.info Реклама на сайте