Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Трещины — Зарождение и развитие при

Технические условия на химические аппараты 216 Технический проект 17 Технологичность сварных конструкций 17 Типизация металлоконструкций 6 Титан — Применение в химической аппаратуре 218 Толщина стенок сосудов — Добавка на коррозию 181 Точность, размеров при изготовлении станин 266 Точность сборки под сварку 26 Трещины — Зарождение и развитие при эксплуатации 98 Трещины горячие 59  [c.374]


Переменные напряжения совсем не вызывают усиления общей коррозии. Ускоренное разрушение деталей происходит в результате появления сетки микроскопических трещин, переходящих в крупную трещину коррозионной усталости, механизм зарождения и развития которой сходен с таковым при коррозионном растрескивании, но приходится только на периоды растягивающих напряжений (рис. 236). Трещины коррозионной усталости могут быть как транскристаллитного, так и межкристаллитного типа.  [c.337]

Как было показано выше, старт трещины при хрупком разрушении реализуется по механизму встречного процесса, который включает зарождение и развитие микротрещины в зоне предразрушения и ее объединение с макротрещиной. После объединения микротрещины с макротрещиной и по сути подвиже-ния макротрещины на некоторую длину возникает вопрос по какому механизму будет происходить дальнейшее развитие макротрещины Возможна реализация двух альтернативных механизмов развития макротрещины.  [c.239]

Таким образом, проведенные исследования позволили отклонить предположения о разрушении металла коллектора в результате снижения малоцикловой прочности или коррозионного растрескивания. Необходимо подчеркнуть, что и по другим характеристикам, таким, как хрупкая прочность, сопротивление усталостным разрушениям на стадии зарождения и развития трещин на воздухе и в коррозионной среде, были подтверждены высокие показатели, при которых преждевременное разрушение коллектора не должно было бы произойти. Вместе с тем, эксперименты по замедленному деформированию (растяжение гладких образцов с малой скоростью деформирования) в коррозионной среде показали, что при составе среды, соответствующей отклонениям, имевшим место в процессе эксплуатации разрушившихся коллекторов (низкий водородный показатель pH, присутствие кислорода), может происходить значительное снижение пластичности стали, причем тем большее, чем ниже скорость деформирования. Такая закономерность соответствует зависимости критической деформации от скорости деформирования в условиях ползучести материала (см. гл. 3). Данное обстоятельство привело к необходимости изучения возможных временных процессов деформирования материала коллектора при стационарном нагружении. Выполненные эксперименты, ре-з льтаты которых будут представлены ниже, показали, что  [c.328]


Часто хрупкое разрушение конструкций происходит от катастрофического распространения трещин при средних напряжениях ниже предела текучести и кажущихся инженеру-конструктору безопасными. Подобные разрушения указывают на недостаточность классических методов расчета на прочность по упругому и пластическому состояниям. Они указывают на необходимость дополнения классических расчетов новыми методами на прочность, учитывающими законы зарождения и развития трещин, а также новые характеристики материала, оценивающие стадию разрушения.  [c.117]

При Стд = О разрушение образца или детали наступит при среднем напряжении = Oj. Экспериментально установлено, что постоянные растягивающие напряжения уменьшают сопротивление усталости, а сжимающие постоянные напряжения затрудняют зарождение и развитие усталостной трещины и повышают предел выносливости. В этом состоит одна из главных причин благоприятного влияния упрочняющей поверхностной обработки деталей.  [c.251]

Таким образом, особенностью развития усталостных трещин у наружной полки и у бобышки является наличие стабильного равномерного роста трещины без резких изменений в скорости и направлении. Зарождение и развитие усталости происходило при относительно низкой амплитуде колебаний в условиях вибрационного нагружения при нормальной работе двигателя, о чем свидетельствует формирование рельефа излома только  [c.579]

При испытании на усталость в условиях изгиба с вращением обнаружено снижение долговечности алюминиевых проволок из-за вредного влияния жидкости. Однако при отсутствии повреждения эмали отмечалось значительное повышение долговечности. Внешнее давление влияет на стадии зарождения и развития трещин. Необходимо считаться с возможными эффектами коррозии и коррозионного растрескивания, вызываемыми жидкостью, передающей давление. Под влиянием высокого давления н идкость может проникать в дефекты и усталостные микротрещины на поверхности.  [c.257]

В этих теориях различаются две стадии образования трещины (а) зарождение и (б) развитие. При наличии частиц либо стадия (а), либо (б) могут быть определяющими.  [c.81]

Величина приложенных напряжений при данной температуре определяет механизм зарождения и развития повреждений. При высоких напряжениях межзеренное разрушение происходит путем зарождения и роста клиновидных трещин, которые появляются на стыке трех зерен и распространяются по границам. Поэтому присутствие в структуре разрушенных деталей клиновидных трещин свидетельствует о высоком уровне напряжений, приближающемся к границе между областями а п б на карте механизмов ползучести и разрущения.  [c.28]

Допустимый срок эксплуатации элементов энергооборудования, например трубопроводов, определяет степень поврежден-ности. Процесс зарождения и накопления повреждений начинается с ранних стадий ползучести. Однако на затухающей стадии появляются только единичные дефекты, которые не представляют опасности для эксплуатации. Заметное усиление процесса зарождения и развития повреждений происходит на ускоренной стадии ползучести, при этом закономерности роста повреждений определяются индивидуальными особенностями материала в одних случаях происходит постепенное накопление дефектов (см., например, рис. 3.22, кривая 2), в других заметные очаги повреждений появляются при исчерпании ресурса на 80—90% и с очень интенсивным развитием повреждений вплоть до образования магистральных трещин (рис. 3.22, кривая 7), в этом случае любыми методами трудно установить предельно допустимую поврежденность, не представляющую опасность и для дальнейшей эксплуатации.  [c.97]

Необходимость многократного воздействия для зарождения и развития трещины с последующим отделением материала следует и из механизмов образования частиц изнашивания, рассматриваемых в [148]. Еще более веским доказательством протекания усталостных процессов на контакте в смысле многократности воздействия является привлечение к рассмотрению изменений материала, обусловленных предварительной механической обработкой поверхности и вносимых в нижележащие слои процессами, протекающими непосредственно в активном слое [53]. Выявление ячеистой дислокационной структуры в поверхностных слоях при трении, аналогичной той, которая имеет место при объемной усталости [160],— другой аспект проблемы, позволяющий предполагать общность механизма разрушения при фрикционной и объемной усталости.  [c.105]


На первом этапе усталостные испытания проводили при постоянном уровне напряжения. Экспериментальные результаты позволили получить количественные соотношения, характеризующие процессы зарождения и развития трещины.  [c.271]

Коррозия с кислородной деполяризацией наблюдается при контакте стальных конструкций с водой, нейтральными растворами солей, а также в атмосфере. Коррозия с кислородной деполяризацией широко распространена и в определенной степени обусловливает процесс зарождения и развития трещин при коррозионной усталости и растрескивании. При подкислении среды, т. е. при снижении pH, процесс идет частично уже с водородной деполяризацией в достаточно кислых средах коррозия протекает практически полностью в условиях водородной деполяризации  [c.33]

Ответ Исследования в данной работе были ограничены определением прочности надрезанных образцов никаких замеров энергий не производили. В ближайшем будущем запланированы работы по оценке энергии зарождения и развития трещины на образцах на раздир и при плоской деформации при 4 К.  [c.191]

Безвольфрамовые твердые сплавы на основе карбида титана имеют в некоторых случаях более высокие значения вязкости разрушения, которая является мерой сопротивления зарождению и развитию трещин, чем твердые сплавы на основе системы W - o (рис. 41) [111]. Поэтому зти безвольфрамовые твердые сплавы могут успешно эксплуатироваться при обработке резанием вязких материалов [111]. Характер износа режущего инструмента из твердых сплавов на основе карбида титана отличается от характера износа традиционных твердых сплавов. Например, режущий инструмент из безвольфрамового твердого сплава КТС эксплуатируется без наростообразования, а абразивный износ происходит по задней грани резца. Шероховатость обработанной резцами из сплава КТС поверхности снижается на два класса чистоты по сравнению с обработанной режущим инструментом из сплавов ВК8 и ТНМ [103].  [c.78]

Физическая природа возникновения АЭ в материале при его пластическом деформировании и разрушении, очевидно, связана с микропроцессами необратимого деформирования и разрушения материалов. Приложенная нагрузка приводит к возникновению в материале конструкции полей напряжений и деформаций, за счет энергии которых зарождаются и развиваются дефекты, приводящие в конечном итоге к разупрочнению материала. Зарождение, перемещение, рост дефек1 ов, а также их исчезновение сопровождаются изменением напря-женно-деформированного состояния и перестроением микроструктуры материала. При этом в материале перераспределяется внутренняя энергия, что приводит к возникновению АЭ. В металлах возникновение АЭ связано с образованием и движение дислокаций, зарождением и развитием трещин, с фазе-  [c.255]

ГОСТ 8732-70 материал по исполнительной документации — сталь 20 по ГОСТ 8732-70. Байпасная линия разрушилась на отдельные фрагменты неправильной формы с линейными размерами от 180 до 1300 мм при пуске компрессора. Ультразвуковая толщинометрия восемнадцати фрагментов байпаса показала, что толщина стенки трубы составляла 8,8-11,1 мм. Твердость металла — 206-215 НВ. Для установления очага разрушения фрагменты были обмерены, промаркированы, и в соответствии с линиями разрыва была разработана схема разрушения. На всех представленных фрагментах изучен характер изломов и определены направления распространения трещин, анализ которых позволил предположить, что очаг разрушения находился в сварном шве приварки байпасной линии к крану. Из этого шва были отобраны темплеты для исследования причин зарождения и развития разрушения. Установлено, что очагом разрушения явился участок сварного шва длиной - 50 мм, от которого началось лавинообразное развитие магистральных трещин с многочисленными разветвлениями и изменениями направлений. При изучении рельефа излома сварного шва были выявлены три зоны 1 — первоначальная трещина длиной до 45 мм и глубиной до 7 мм с очагами разрушения в дефектах сварки (подрез, несплавления) 2 — трещины, развившиеся в процессе эксплуатации байпасной линии 3 — долом с гладким срезом. Микроструктурный анализ показал, что начальная трещина развивалась в корневом шве по линии сплавления. В ходе анализа химического состава металла было установлено, что материал байпасной линии соответствовал стали 75 по ГОСТ 14959-79, на основании чего было сделано предположение, что для монтажа байпаса был использован участок трубы из обсадной или технической колонны марки Л, применяемой при обустройстве скважин. Механические свойства и хими-  [c.53]

Механика разрушения изучает устойчивость макрофещип при различных внешних условиях. Но процесс разрушения начинается с развития малых трещин, который может охватывать большие периоды времени, что определяется внешними факторами. Зарождением и развитием субмикротрещин занимается физика, а устойчивостью больших трещин - механика разрушения.  [c.286]

На начальном этапе своего развития описание всех процессов зарождения и развития трещин осуществлялось таким образом, как если бы трещины были прямыми отрезками и линиями. Такие трещины можно описывать асимптотическими уравнениями. Это была линейная механика разрушения. В ней рассматривалось исключительно хрупкое разрушение, происходящее при росте трещины без заметных пластических деформаций материала. Это послужило первым приближением к описанию ргзрушения.  [c.19]

Наличие трещин в конструкциях и случаи их хрупкого разрушения, происходяпще при средних напряжениях ниже предела текучести (кажущихся ипженеру-копструктору безопасными), показали недостаточность классических методов расчета на прочность по упругому и пластическому состояниям. Возникла необходимость дополнить их новыми методами расчета на прочность, учитывающими законы зарождения и развития трещин, и новыми характеристиками материала, оценивающими стадию разрушения.  [c.19]


Итак, относительно рассмотренных дисков можно заключить, что, во-нервых, рост трещин в дисках был обусловлен высокой асимметрией цикла их нагружения при работе двигателей на длительно используемых режимах, а во-вторых, напряженное состояние дисков в зонах зарождения и развития трещин при этих режимах работы двигателя отвечает величинам Х ,ах и АХ, которые превышают пороговые значения этих параметров для сплава ВТЗ-1.  [c.502]

В указанных двух случаях, к моменту выравнивания внутреннего давления в лонжеронах с внешним давлением, в них не успевали зародиться и распространиться усталостные трещины от границы продольной несплошности. В других случаях с увеличением периода эксплуатации лопасти с несплошностью производственного характера, расположенной по внутренней стенке, например по ребрам жесткости, происходит зарождение и развитие усталостных трещин. На этот факт указывают и другие случаи повреждения лонжеронов, такие как коррозия, механическое повреждение, засверливание и др., от которых имело место зарождение и развитие усталостных трещин (см. табл. 12.2). При этом важно подчеркнуть, что неупорядоченный характер расположения повреждений по длине и по сечению лонжерона определяет различие в протекании процесса не только зарождения, но и роста трещины, так как различным образом реализуется ее раскрытие. Роль раскрытия трещины является определяющей в скорости стравливания давления через полость неснлошпо-сти лонжерона, поэтому именно ее используют в качестве характеристики, определяющей эффективность работы сигнализатора.  [c.637]

В ходе изучения кинетики зарождения и развития усталостной трещины было показано, что к моменту последнего полета вертолета в лонжероне лопасти усталостная трещина протяженностью около 80 мм уже имела место при окончательной длине трещины около 110 мм и ее площади около 60 % по отнопгенню ко всему сечению лонжерона. Последний полет происходил при нестабильном развитии усталостной трещины, когда ее скорость существенно превышает указанную выше величину максимальной скорости стабильного роста трещины. Поэтому продвижение трещины было осуществлено на значительную длину, составившую около 20 мм (рис. 12.11). Причем характерно, что на относительном радиусе лопасти 0,5 процесс роста трещины шел менее интенсивно, чем на относительном радиусе лопасти 0,7. Из изменения параметров рельефа излома видно насколько близким к драматическому исходу было развитие усталостной трещины в лонжероне в последнем, коротком полете вертолета. Только в отдельных локальных зонах по сечению еще происходило устойчивое подрастание трещины. При частоте вращения лопасти 120 об/мин средняя скорость распространения усталостной трещины составила около 20/(10 X 120) = 1,6 10 м/цикл. Это на порядок больше, чем для максимальной скорости стабильного роста трещины в алюминиевых сплавах, что еще раз подтверждает драматический характер развивавшихся событий в последнем полете вертолета.  [c.649]

Добавление этой дополнительной длительности работы колес с усталостными трещинами к уже установленной для этапа распространения трещины свидетельствует о том, что для двух исследованных ЗК с наработкой 875 и 511 ч после последнего ремонта вся длительность работы детали с усталостной трещиной была существенно меньше после ее зарождения от шлиц. Следовательно, если в ЗК трещины отсутствовали во время ремонта, то существует высокая вероятность того, что в межремонтный период может происходить зарождение и развитие всего процесса усталостного выкрашивания шлиц, последуютцего зарождения и распространения магистральной усталостной трещины до разрушения ЗК. Поэтому для данного вида ЗК при допуске начального выкрашивания шлиц в эксплуатацию было введено дополнительное требование к однократному контролю ЗК при половине наработки межремонтного ресурса.  [c.694]

При численном исследовании возможных путей зарождения и развития разрушения в слоистом композите из N (- 50) параллельных элементов под действием растягивающего напряжения о Скоп и Аргон [32] нашли, что определяющим видом устойчивого развития разрушения является симметричное распространение разрушения от изолированного зародьипа путем последующего разрушения двух соседних элементов. Разрушение в конце концов становится неустойчивым, когда разрушенные близлежащие элементы образуют трещину критической для данного напряжения длины. В этот момент трещина быстро пройдет через деталь.  [c.189]

В работе С. И. Кишкиной и Э. М. Радецкой [76, 77] показано, что коррозионная среда наиболее сильное влияние оказывает на зарождение трещины. Это объясняется тем, что при зарождении трещины обеспечивается свободный доступ среды к ее устью, а при дальнейшем развитии продукты коррозии, накапливающиеся в ее полости, мешают доступу среды. Несмотря на некоторое противоречие во мнениях о влиянии среды на зарождение и развитие разрушения, большинство исследователей [76, 79] приходят к выводу, что при работе в коррозионных средах увеличивается скорость распространения усталостного разрушения.  [c.129]

Поскольку механический фактор при усталости вызывает развитие повреждений по плоскостям сдвигов, т. е. внутри зереи, и в этом направлении коррозионный фактор усиливает развитие разрыхления, то естественно в этих случаях зарождение и развитие трещины усталости будет внутризеренным. При превалирующем влиянии коррозионного фактора на границах зерен наблюдается больше разрыхлений, т. е. большее снижение прочности, чем при совместном действии обоих факторов внутри зерна. Поэтому при относительно высоком уровне переменных напряжений следует ожидать преимущественно внутризеренное разрушение, при низком — межзеренное. Однако это общее правило в ряде случаев не соблюдается из-за особого характера коррозионной среды и склонности материала к тому или другому виду разрушения. В перестаренном состоянии сплава системы А1—Zn—Mg наблюдались приграничные зоны, свободные от выделений, по которым облегчалось скольжение, что привело к распространению трещины по границам зерен, ориентированным вдоль направления действия максимальных касательных напряжений [144]. При последовательном изменении среды в процессе испытания в ряде случаев менялась скорость развития трещин [76]. Особенно скорость разрушения увеличивалась при введении коррозионной среды в тех материалах и для тех состояний материала, которые склонны к коррозионному растрескиванию, например в высотном направлении в сплаве В93, когда скорость разрушения в 3%-ном растворе Na l была в 3— 4 раза больше, чем на воздухе. Такого явления не наблюдалось, например, для титанового сплава ВТ22.  [c.130]

Основной задачей работы явилось установление влияния состава и структуры на основные закономерности поведения при деформировании, зарождение и развитие трещин в сложнолегированных алюминиевых сплавах в условиях растягивающих напряжений при комнатной и повышенной температурах.  [c.121]

В работе [86] описан прибор конструкции И. А. Гиндина и Я. Д. Ста-родубова для изучения микротвердости и микроструктуры различных материалов как при охлаждении ниже 0° С, так и в процессе низкотемпературного (10—300° К) деформирования. Прибор снабжен алмазной пирамидой, охлаждаемой до температуры опыта, а также оптической системой, с помощью которой определяются размеры наносимого на образец отпечатка при температуре испытания и исследуется микроструктура. На этом приборе наблюдают фазовые превращения, старение и распад метастабильных структур при активизации пластическим низкотемпературным деформированием или только при охлаждении. Кроме того, с помощью данного прибора можно изучать закономерности зарождения и развития трещин в твердых телах, что весьма важно для установления физической природы хладноломкости металлов и сплавов.  [c.193]


В лаборатории высокотемпературной металлографии Института машиноведения впервые были сделаны попытки применить анализаторы изображения для изучения деформационной структуры образцов металлических материалов после их испытания в установках для тепловой микроскопии. Разработанные при этом методики позволяют производить количественный анализ накопления усталостных повреждений (подсчет числа линий скольжения и их площади), изучение процессов зарождения и развития усталостной трещины (измерение длины трещины и площади пластической зоны в ее вершине), измерение величины диагонали и расстояния между отпечатками ми кротвердости [76].  [c.284]

ЗАРОЖДЕНИЕ И РАЗВИТИЕ УСТАЛОСТНЫХ ТРЕЩИН В МЕТАЛЛАХ ПРИ МНОГОЦИИЛОВОМ НАГРУЖЕНИИ  [c.3]

Значения постоянных am для исследуемой стали отличаются от предлагаемых Такашимой [3] значений для подобных материалов. Проведенные экспериментальные исследования на образцах при ступенчато-переменном нагружении [4] выявили влияние начальных перегрузок на процессы зарождения и развития трещины (рис. 3).  [c.273]

Зарождение и развитие усталостных трещин в металлах при многоцикловом нагружении / Трощенко В. Т.— В кп. Механическая усталость металлов Материалы VI Междупар. коллоквиума. Киев Наук, думка, 1983, с. 3—14.  [c.420]

В статье дан краткий анализ результатов исследования зарождения и развития усталостных трещин в металлах при многоцикловом нагружении, полученных в Институте проблем прочности АН УССР. Показано, что об интенсивности накопления усталостного повреждения па стадии зарождения усталостной трещины можно судить по величине неупругой циклической деформации. Приведены деформационные и энергетические критерии зарождения трещин рассмотрены закономерности развития усталостных трещин п обоснована целесообразность использования в расчетах характеристик вязкости разрушения при циклическом нагружении.  [c.420]

Использование надежных конструкторско-проверочных методов требует знания условий зарождения и развития уста.лостных трещин в реальном элементе конструкции. При моделировании на ЭВМ процесса зарождения и развития трещины проведены экспериментальные исследования на образцах, с целью оценки влияния основных факторов. По экспериментальным результатам установлена соответствующая математическая модель и определены постоянные материалы. С помощью установленной модели, моя но моделировать процесс усталостного повреждения в простых деталях при одноосном нагружении.  [c.432]

Процесс зарождения и развития трещин коррозионной усталости также можно разделить на несколько этапов. Этап I, как и при растрескивании, - инкубационный. На этом этапе вследствие деформационного выхода на поверхность дислокаций и образования полос скольжения на металле формируются анодные зоны локальной коррозии. Роль среды, по-видимому, сводится к адсорбционному облегчению (ускорению) выхода полос скольжения на поверхность металла, т. е. в определешой степени проявляется эффект Ребиндера. После формирования на металле стойких полос скольжения с более отрицательным электродным потенциалом, чем потенциал остальных участков поверхности [12], начинается локальная коррозия по месту полос скольжения, т. е. реализуется П этап развития трещин — их коррозионное зарождение.  [c.95]

Постепенное увеличение предела текучести, т. е. увеличение сопротивления металла пластической - деформации, приводит к тому, что при температуре хрупкого перехода релаксация внешнего напряжения вследствие инициирования пластической деформации становится менее вероятной, чем вследствие зарождения и развития трещин. В результате металл начинает разрушаться хрупко без заметной предшествующей макропла-стической деформации.  [c.37]

Вблизи М. г. большинство физ. процессов протекает иначе, чем в объёме зёрен как правило, облегчены выделение новых фаз, зарождение и развитие трещин М. г. являются стоками примесных атомов. При высоких темп-рах на М. г. происходит рождение и исчезновение вакансий и межузельных атомов. Высокотемпературная пластич. деформация происходит существенно легче на М. г,, чем внутри зёрен зёрна как бы проскальзывают одно по поверхности другого, что в нек-рых случаях облегчает развитие деформации в поликристаллах (сворхпластичность).  [c.87]

Характер разрушения при всех видах испытаний (растяжении, сжатии, изгибе, кручении) как под действием нормальных (отрыв), так и сдвиговых (срез) напряжений бывает вязким или хрупким. Различие между вязким и хрупким разрушениями заключается в величине нластич. деформации, накопленной перед разрушением. Оба вида разрушения связаны с зарождением и развитием трещин. Оценка сопротивления разрушению при обычных статич. испытаниях (предел прочности, временное сопротивление разрушению) часто недостаточна для определения пригодности материала как конструкционного, особенно при наличии надрезов, трещин п др. концентраторов напряжений. В этом случае применяют испытания на вязкость разрушения, при к-рых используют образцы с заранее созданными в них трещинами, и оценивают параметр (К), к-рый наз. коэф. интенсивности напряжений. Определяют этот коэф. для плоского (/Гд) или объё.много (КсО напряжённых состояний.  [c.130]

ПО числу циклов N, соответствующему моменту разделения образца на две части. Усталостная долговечность N включает в себя два разных, последовательно протекающих процесса. Первый из них — это собственно усталость, при котором происходит процесс зарождения макротрещины. Число циклов, при котором обнаруживается макротрешина, зависит от точности приборов для ее обнаружения. Обычно за момент появления трещины принимают то число циклов, при котором ее длина составляет 0,2—0,5 мм. Второй период — это период развития трещины до критического значения, при котором происходит практически мгновенное разделение образца на две части. Число циклов = jV -называют живучестью образца. Законы зарождения и развития трещины управляются различными механизмами, на которых мы остановимся ниже.  [c.438]

Аналогичные процессы зарождения и развития трещины происходят при циклическом нагружении и в рабочих лопатках, однако, их условия работы даже при одинаковых напряжениях будут значительно отличаться от условий работы образцов они отличаются и размерами, и формой, и характером изменения напряжений по толщине и т.д. Поэтому простое использование результатов испытаний образцов для оценки надежности рабочих лопаток затруднительно. На этапе проектирования выход из создавшегося положения состоит в том, что в конструкции допускаются напряжения такие, чтобы материал работал при напряжениях ниже предела усталости с определенным запасом, и трещина не могла бы возникнуть. Тем не менее, опыт многочисленных поломок рабочих лопаток свидетельст-  [c.438]


Смотреть страницы где упоминается термин Трещины — Зарождение и развитие при : [c.10]    [c.13]    [c.93]    [c.26]    [c.57]    [c.59]    [c.551]    [c.594]    [c.187]   
Проектирование сварных конструкций в машиностроении (1975) -- [ c.0 ]



ПОИСК



Аргириаде А., Шульц ТСафта В. О предсказании развития усталостного повреждения на основе моделирования процесса зарождения и распространения трещин

Зарождение и развитие трещин при солевой коррозии

Зарождение и распространение трещин при развитии отпускной хрупкости

ОБЩИЕ ВОПРОСЫ УСТАЛОСТИ Трощенко В. Т. Зарождение и развитие усталостных трещин в металлах при многоцикловом нагружении

Особенности зарождения и развития усталостных трещин при циклическом нагружении деталей машин

Пор зарождение

Трещина зарождение

Трещина развитие

Трещины — Зарождение и развитие при эксплуатации

Удельная энергия зарождения и развития магистральной трещины

Экспериментальное исследование поверхностного диффузионного легирования бором и хромом образцов из стали 45 на процессы зарождения, развития и торможения усталостных трещин



© 2025 Mash-xxl.info Реклама на сайте