Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вязкость масел, смазок

Особую роль играет температурный фактор при деформации с применением технологических смазок. Температура сильно влияет на вязкость масел, на количество смазки, вовлекаемой в очаг деформации (при прокатке, волочении, прессовании), и величину коэффициента трения (см. п. 6.5). От температуры зависит также структура смазочного слоя и его прочность (сопротивление продавливанию и сдвигу).  [c.25]

В зарубежной практике при разработке эффективных смазок также используются процессы, повышающие вязкость масел. Применяется химическая обработка говяжьего жира, повышающая его вязкость в 4 раза и снижающая коэффициент трения с 0,058 до 0,043 [189].  [c.151]


Анид более теплостойкий, чем капрон. Он выдерживает длительное нагревание до 270° С обладает более высокой прочностью на износ и удельной ударной вязкостью, чем капрон нерастворим в обычных органических растворителях инертен к щелочам устойчив против разбавленных минеральных кислот, нефтяных масел, смазок.  [c.253]

Пластичные смазки хорошо удерживаются в механизмах и не требуют сложных уплотнений. Вязкость смазок в гораздо меньшей степени зависит от температуры, чем вязкость масел, на основе которых они сделаны. В узлах с интенсивным тепловыделением пластичные смазки не применяются из-за неспособности отбирать тепло от трущихся поверхностей. Водостойкие смазки лучше, чем масла, защищают поверхности от попадания воды.  [c.296]

Резкое увеличение вязкости картерных масел и трансмиссионных смазок из-за их остывания — одна из причин трудности запуска двигателей в зимнее время. При запуске холодного двигателя ненормальная циркуляция масла в системе приводит к повышенному износу деталей (цилиндров, поршневых колец и др.). Увеличение вязкости трансмиссионных смазок может привести к потере 40—50% мощности двигателя.  [c.215]

В условиях высоких температур (выше 300° С) без воздуха, например в цилиндрах паровых машин, преобладают процессы термического распада с образованием нагаров, содержащих твердые углеродистые частицы. Интенсивное окисление менее устойчивых углеводородов и испарение легких фракций сопровождается увеличением вязкости масел и повышением сопротивления сдвигу консистентных смазок. В этих условиях возникает необходимость чаще менять смазочные материалы.  [c.301]

Рис. 17. Зависимость вязкости пластичных смазок и масел от градиента скорости сдвига Рис. 17. Зависимость вязкости пластичных смазок и масел от <a href="/info/79">градиента скорости</a> сдвига
Использование смазок. Если нагрузка не очень велика хороший результат дает применение масел с низкой вязкостью особенно в сочетании с обработкой поверхностей фосфатами. Мало вязкие масла быстро проникают к свежей поверхности металла образующейся при трении. В качестве твердой смазки можно ис пользовать сульфид молибдена, особенно если он спекается с по верхностью металла, однако этот положительный эффект имеет временный характер, так как смазка в конце концов удаляется в результате движения поверхностей.  [c.169]


Кроме вязкости масла характеризуются также содержанием примесей, температурой вспышки, температурой застывания, кислотностью. Некоторые эксплуатационные показатели масел можно существенно повысить с помощью присадок, вводимых в масла в малых количествах. К таким присадкам относятся, например, соединения хлора, фтора, фосфора. Масла, применяемые в качестве смазок механизмов приборов, должны сохранять свои физико-механические свойства в значительном диапазоне температур в течение длительного времени и не вызывать коррозии поверхностей деталей. Значения кинематической вязкости и область применения некоторых марок масел приведены в табл. 16.5.  [c.167]

Ротационные вискозиметры весьма удобны для испытания высоковязких жидкостей масел при низких температурах, расплавленных битумов, смазок различных суспензий и т. п. При определенном конструктивном исполнении ротационного вискозиметра можно совместить определение вязкости и удельного электрического сопротивления жидкости (по току утечки между цилиндрами), что позволяет исследовать связь проводимости с вязкостью (например, для расплавленных стекол, смол и т. п.).  [c.185]

Масла О КБ-122-3, ОКБ-122-4, ОКБ-122-5, ОКБ-122-14 и ОКБ-122-16 (ТУ МХП 4216—55) — кремнийорганические жидкости, обладающие необходимыми вязкостью, низкотемпературными свойствами и испаряемостью, в смеси с минеральными маслами, придающими смазывающую способность. Масла ОКБ-122 очень высокой чистоты, их применяют непосредственно для смазывания приборных подшипников и узлов трения при температурах от —60 до +120° С и для изготовления смазок ОКБ-122. Свойства масел приведены б табл. И.  [c.313]

Манжетное уплотнение с отогнутым уплотняющим элементом из кожи или синтетического материала. Применяется главным образом в качестве пылезащитного, а также для удержания консистентных смазок. Этот тип манжет не пригоден для уплотнения масел с низкой вязкостью. Манжетное уплотнение удобно для размещения в условиях ограниченного пространства и там, где требуется низкое трение  [c.20]

Маслорастворимые ингибиторы коррозии усиливают защитные свойства масляных пленок обычных минеральных масе.ч. На их основе и создаются жидкие ингибированные смазки — минеральные и нефтяные масла, имеющие обычную для нефтяных масел вязкость, но активированные одним или несколькими ингибиторами коррозии. В состав таких смазок могут входить адгезионные или гидрофобные добавки, улучшающие состав адсорбционной защитной пленки на поверхности металла.  [c.90]

В последние годы наблюдается тенденция к снижению вязкости хлорированных и сульфированных масел с тем, чтобы их можно было использовать при операциях, выполняемых при средних и высоких скоростях резания. Многие из этих масел могут быть использованы как жидкости для резания металла и для смазки подшипников станка. При этом предусматривается возможность разведения активного масла машинной смазкой и многократное его использование. Слоистые твердые смазки, такие, как дисульфид молибдена, также используются в качестве СОЖ, однако, трудности удержания таких смазок на режущей поверхности ограничивают их применение.  [c.94]

Войлочные кольца не рекомендуется применять в условиях повышенной загрязненности окружающей среды, при наличии избыточного давления с одной стороны кольца, при температурах свыше - -90"С. Перед монтажом уплотнительные кольца пропитывают разогретой смесью жирового солидола (85%) и чешуйчатого графита (15%) или другими видами масел или пластичных смазок с несколько большей вязкостью, чем у смазки, применяемой при эксплуатации подшипникового узла.  [c.319]

Вязкость жидких консервационных смазок практически соответствует вязкости минеральных масел авиационных, индустриальных, дизельных и т. п., поэтому термин смазка к ним применен не совсем точно, скорее их можно назвать консервационными или защитными маслами. Механизм защитного действия их иной, чем углеводородных защитных консистентных смазок. Присадки, находящиеся в смазках К-17, способствуют образованию на поверхности металла адсорбционной пленки, которая препятствует проникновению агрессивных веществ и влаги к ней.  [c.48]


У масел и смазок перед консервацией определяют содержание воды, кислотное число, содержание водорастворимых кислот и щелочей, вязкость, корродирующее действие на металл.  [c.131]

ИЛИ цилиндровыми и т. д. Процентное соотношение смешиваемых масел для получения вязкости оцределяется по номограмме (фиг. 134). Номограммой пользуются следующим образом. На правой (масло Л) и на левой (масло Б) шкалах отмечают точки, соответствующие вязкости масел, имеющихся в наличии, и соединяют их прямой. Из точки пересечения этой прямой с горизонтальной линией, соответствующей вязкости требуемого масла, опускают перпендикуляр вниз и на нижней шкале читают соотношение смазок в процентах. Наприме р (фиг. 134), для получения смеси с вязкостью 3°Е из масла А с вязкостью 2°Е и масла Б вязкостью 5°Е нужно взять 55% масла Б.  [c.255]

В весенне-летних услов 1ях машины на открытом воздухе работают при повышенной температуре и запыленности. Весной и летом двигатели чаще перегреваются, топливо быстрее испаряется, снижается вязкость масел и смазок. Это ухудшает работу машин. Поэтому при подготовке их к эксплуатации в весенне-летних условиях зимние рабочие жидкости сливают и заменяют летними средства обогрева и утепления машин снимают, ремонтируют и сдают на склад плотность электролита в аккумуляторах доводят до требуемой в данных климагических условиях (в южных районах — 1,24, а центральных и северных с 1 мая — 1,27) и т. д.  [c.286]

На рис. 2 проведена пунктирная прямая, пересекающая температурные кривые вязкости масел, на которых были приготовлены смазки, в точках с одинаковой вязкостью. Величины предельного напряжения сдвига смазок, установленные при этих температурах, позволяют получить представление о температурной зависимости истинного статического загущающего эффекта стеарата лития и церезина, не искаженного влиянием вязкости жидкого компонента.  [c.8]

Влияние у-облучения на некоторые промышленные масла, смазочные материалы и консистентные смазки изучалось Керролом и Келишем [5]. Часть полученных ими данных приведена в табл. 3.4. Для большинства указанных жидкостей изменения спецификационных свойств при облучении являются типичными для масел на основе нефтей нафтенового основания, из которых они состоят. Однако в некоторых случаях замечается явное влияние содержащихся в них присадок на радиационную стойкость. Турбинное смазочное масло, содержащее антиоксидант, более устойчиво, чем масло без стабилизирующих присадок. Доказательством радиолитического разрушения присадок, повышающих индекс вязкости жидкости для автоматических трансмиссий, служит уменьшение вязкостей жидкости при умеренных дозах у-облучения. Важно то обстоятельство, что, хотя все масла потемнели, числа нейтрализации и коррозионная агрессивность по отношению к меди существенно не менялись, а противозадирные свойства смазок под действием 7-излучения неизменно улучшались (см. табл. 3.4).  [c.127]

Известен ряд эффективных методов предотвращения фрет-тинг-коррозии. Основными являются так называемое ращю-нальное конструирование, применение различных смазок (масел, обладающих малой вязкостью), использование эластомер-ных прокладок или же материалов с низким коэффициентом трения, а также сопряжение мягкого металла с твердым. В частности, для работы в контакте со сталью можно рекомендовать покрытия из Sn, Ag, РЬ, а также кадмиевое покрытие. Для предотвращения фреттинг-усталости следует избегать конструкций, в которых поверхность соприкосновения деталей совпадает с областью концентрации напряжений. В ряде случаев целесообразно поверхностное упрочнение металла, т, е, обработка на белый слой , дробеструйная обработка или же накатка роликами.  [c.55]

Станции предназначены для поочередного периодического нагнетания плаС" тичных смазок с числом пенетрации не ниже 260 при температуре 25 С и минеральных масел с кинематической вязкостью не ниже 30 сСт npw температуре 50 °С в магистрали централизованных двухлинейных автоматическях смазочных систем при температуре окружающей среды от 10 до 40 °С. Станции должны изго-товляться двух типов 1 — петлевые, 2 концевые двух исполнений по виду смазочного материала 1—для подачи пластичной смазкй 2—для подачи минерального масла трех исполнений по виду приводного электродвигателя 1 — с электродвигателем переменного тока напряжением 220/380 В закрытого исполнения 2 — с электродвигателем постоянного тока напряжением 220 В закрытого исполнения 3 — с электродвигателем переменного тока напряжением 380 В взрывозащищенного исполнения.  [c.355]

Полиметилсилоксановые жидкости наиболее широко используются в качестве жидких и консистентных смазок самого различного назначения, обеспечивающих надежную работу машин и механизмов при температурах —70 300°С. Кремнийорганическая смазка примерно в 10 раз долговечнее смазок из минеральных масел. Вязкость различных марок ПМС изменяется в широких пределах — от 1 до 1-10 сст, при этом вязкость ПМС в отличие от минеральных масел в меньшей степени изменяется с температурой.  [c.19]

Эффективная вязкость в пуазах. Вязкость смазок при постоянной температуре зависит от скорости деформации. Вязкость смазки, определенная при данной скорости деформации и температуре, является постоянной величиной и называется эффективной вязкостью. Для жидких масел вязкость мало зависит от скорости деформации и величина эффективной вязкости совпадает с величиной динамической вязкости. Эффективная вязкость служит показателем прокачивания смазок по системам смазки, вытекающей из калиброванного отверстия. Эффективную вязкость смазок определяют автоматическим капиллярным вискозиметром АКВ-4 или пластиковискозиметром ПВР-1.  [c.301]

Масла турбииные. Нефтяные масла, обладающие высокой стойкостью против окисляющего действия пара и воздуха при повышенных температурах и деэмульгирующими свойствами. Они предназначаются для смазывания и охлаждения паровых и газовых турбин п других подобных машин. Турбинные масла являются основой для производства других специализированных масел и смазок. По ГОСТ 32—74 выпускают масла кислотно-земельной очистки без присадок четырех марок Т22, Тао, Т46 и Т57 (индекс вязкости 60) и по ГОСТ 9972—74 масла селективной очистки с присадками, улучшающими антиокисли-  [c.450]


В часовых, оптических, электроаппаратных, приборных и других тому подобных механизмах вследствие их миниатюрности узлы трения являются открытыми и малодоступными для регулярного обслуживания или осуществления централизованной смазки. Поэтому к приборным маслам и смазкам предъявляют дополнительные требования для минимализации испаряемости, расте-каемости и ненарастания вязкости при окисляемости в тонком слое. Они должны обладать невысокой вязкостью, чтобы не тормозить перемещения частей приборов. Вязкость должна быть постоянной при смене температур. Однако нп одно чистое нефтяное масло таким требованиям не удовлетворяет, поэтому в состав приборных масел вводят компоненты в виде растительных и животных жиров и других легирующих добавок. По составу они соответствуют синтетическим смазкам и отличаются от них только вязкостью. Это обстоятельство служит достаточным основанием для выделения такой характерной группы масел и смазок в отдельную группу. Все масла и смазки данной группы характеризуются отсутствием механических примесей, воды, водорастворпмых кислот и щелочей и выдерживают испытание на коррозию. Ниже описаны эти масла, а в табл. 10 приведены их наиболее общие свойства.  [c.462]

В зависимости от назначения присадки подразделяют на вязкостные (повышающие вязкость), депрессорные (понижающие температуру застывания), диспергирующие (уменьшающие осадки), противоизносные (уменьшающие износ контактирующих поверхностей), антиокислительные (замедляющие окисление масла и смазок), антикоррозионные (снижающие коррозирующее действие масел и смазок и повышающие сохранность смазываемых узлов), моющие (уменьшающие лакообразоваппе), маслянистые (понижающие коэффициент трения), обкаточные, или прпработочпые (сокращающие время и повышающие  [c.476]

Эффективность смазок для титана. Обладая высокой поверхностной активностью, титан очень интенсивно образует окисные пленки (хемсорбция кислорода) и адсорбирует газы из окружающей среды (активированная физическая адсорбция газов). Защищенная газами активная поверхность титана теряет способность адсорбировать обычно применяемые в промышленности виды смазок. В работах Е. Рабиновича и А. Кингсбери [136] показано, что минеральные масла (испьггывалось 15 марок масел с различными антифрикционными добавками и без них) с вязкостью от 50 до 1000 сСт не эффективны (/ = 0,45 н- 0,47) производные углеводородов с длинной цепью также не эффективны (/ близок к 0,47) реагирующие с поверхностью титана неорганические жидкости (крепкий раствор каустической соды в воде, раствор йода в спирте, раствор сероводорода в воде и др.) значительно снижают коэффициент трения, но свойства этих жидкостей (низкая вязкость, испарение составляющих и др.) не позволяют использовать их для практического применения в качестве смазки синтетические соединения с длинной цепью (силиконовые масла, полиэтиленовые и полипропиленовые гликоли, растворы сахара, патока, мед и др.) уменьшают коэффициент трения причем самыми эффективными являются полиэтиленовые гликоли (/ =0,26) некоторый положительный результат в снижении коэффициента трения отмечается для углеводородов, содержащих галогены.  [c.188]

Станции предназначены для поочередного нагнетания пластичных смазок с числом пе-нетрации не ниже 260 при температуре 25 °С и минеральных масел с кинематической вязкостью не ниже 30 мм с при температуре 50 °С в магистрали централизованных двухлинейных автоматических смазочных систем при температуре окружающей среды от 10 до 40 °С. Станции должны изготовляться двух типов  [c.522]

Стабильность масел оценивают в соответствии с ГОСТ 11063—7 7 по нарастанию вязкости после выдержки за определенное время при 200 °С. Механическую стабильность пластичных смазок определяют по изменению предела прочности на разрыв в результате интенсивного деформирования смазки в зазоре между ротором и статором тиксометра и при последующем тиксотропном восстановлении (ГОСТ 19295—73). Коллоидная стабильность по ГОСТ 7142—74 характеризуется количеством масла, отпрессованного из пластичной смазки на пенетрометре. Число диэмульгации — время, в секундах, в течение которого из эмульсии нефтяного масла, заэмульгированной сухим паро л, выделяется определенное количество масла (ГОСТ 12068—66).  [c.131]

Плотность минеральных масел (табл. 27) в большинстве случаев находится в пределах 0,88—0,92, Кроме масел, в качестве смазок и их компонентов используется также мазут, который выпускается шести различных марок (ГОСТ 10585—75), содержит до 1,5 % воды и 0,5—3,5 % серы зольность не выше 0,14 % механических примесей до 0,8 % (до 2 % у мазута 100) температура вспышки в открытом тигле /вс = 80 — ПО °С температура самовоспламенения /св = 350 °С температура застывания /3= 10—25 °С вязкость V50 = (28—29) мм /с, Vloo = 6,5— 9,5 мм /с.  [c.131]

Низкомолекулярные силиконовые полимеры линейного строения, представляющие собой маслоподобные жидкости, пригодны для применения в качестве смазок, гидравлических жидкостей, препаратов, предупреждающих вспенивание и расслаивание пигментов, а также в качестве полирующих средств для автомобилей и мебели. Помимо термостойкости, они обладают также способностью сохранять при изменении температуры почти неизменную вязкость. Рохов [1] и Вилькок [3] иллюстрируют эту способность, сопоставляя вязкости силиконовых и нефтяных масел в интервале от 99 до —57°.  [c.639]

Сдвоенный вискозиметр В. П. Павлова [19]. Измерения вязкости на вискозиметре ведутся по методу Q = onst. Он предназначен для измерения и исследования вязкостных свойств консистентных смазок и смазочных масел. Прибор состоит из двух одинаковых вискозиметров, различающихся только длиной цилиндров. Внутренние цилиндры от общего привода вращаются с одинаковой ско-  [c.172]

Автоматический ротационный вискозиметр Р. Вельтман и П. Кунса [57]. Прибор допускает испытание материалов при Q = onst и по заданной программе автоматического изменения Й за определенные отрезки времени. Кривые течения материала записываются на двухкоординатном регистрирующем устройстве. На нем же воспроизводится при желании запись зависимости напряжений сдвига от времени. Автоматическое управление прибором позволяет записывать кривую течения за 15 сек при изменении скорости деформации от О до 4-10 сек. За столь малые отрезки времени испытания тепловые эффекты не успевают проявиться в такой мере, чтобы оказать существенное влияние на результаты измерений. Автоматический вискозиметр применялся для испытаний смазочных масел и консистентных смазок. Наружный цилиндр приводится во вращение со скоростью от О до 400 или от О до 1,6-10 об мин. Крутящий момент передается на внутренний цилиндр, связанный с измерителем тензометрического типа. Пределы измерения вязкости от 5-10" до 2-10 н-сек-м скоростей деформации до 4-10 сек напряжений сдвига от 5 до 2,5-10 Я 1 — Oi75 0,535 Янз = 1Л  [c.179]

Продукты группы 3 — наиболее пестрое семейство продуктов. Они образуют на металле тонкие полумягкие (восковые), мягкие (мазеобразные типа пластичных смазок) и масляные пленки, причем последние могут относиться к типу вязких, загущенных масел (вязкость кинематическая при 100 °С равна 5—40 см /с) или маловязких, легких масел (вязкость кинематическая при 50 °С составляет 5—50 см /с). Характерной особенностью продуктов этой группы являются отличные или хорошие физико-химические свойства, свойства в системах металл — ПИНС , металл — электролит — ПИНС , защитные свойства. Пленки этих продуктов не обладают атмосферо- и абразивостойкостью. ПИНС группы 3 , 3 -РК по суммарным функциональным свойствам набирают более 500 баллов и дают ожидаемые средние гарантийные сроки защиты до 7,4 лет, остальные продукты этой группы — до 6,5 лет.  [c.29]


ГОСТ 10586—63) и пушечная смазка (ГОСТ 3005—51). Как правило, ими покрывают при выпуске с заводов все неокрашенные части станков, пром. оборудования, пряборов, инструмента, металлич. тары (бидоны из белой жести) и т. п. Эти смазки имеют хорошие защитные св-ва, что обусловлено их водостойкостью и химич. стабильностью. Известны случаи, когда они предохраняли металлоизделия от коррозии в течение 10 и более лет. Применение этих смазок при низких темп-рах затруднено вследствие их высокой вязкости. Темп-ра плавления углеводородных С. з. 50—60°, что облегчает их нанесение на защищаемые поверхности в расплавленном виде, но исключает их применение при высоких темп-рах. Смазка. 4МС (выпускается АМС-1 и АМС-3, ГОСТ 2712-52) — загущенное алюминиевыми мылами вязкое масло вапор, хорошо защищает металлоизделия от коррозии даже при контакте с морской водой. Эти смазки при низких темп-рах сильно загустевают, особенно АМС-3. Темп-ра плавления 85—95°. Не могут применяться в расплавленном состоянии, т. к. при темп-ре выше точки плавления они изменяют свои св-ва. При консервации реактивных и поршневых двигателей внутр. сгорания используют жидкую смазку К-15 (ГОСТ 9185—59)— смесь масел МС-20 и трансформаторного с добавкой примерно по 1 % присадки ЦИАТИМ-339, каучука и литиевого мыла из окисленного петролатума. В зависимости от типа двигателя и условий хранения смазка сохраняет свои защитные свойства в течение неск. лет. Перед пуском двигателя смазку не нужно удалять.  [c.175]

В кранах в основном применяют смазочные материалы минерального происхождения, имеющие по сравнению с другими видами смазок меньшую стоимость и лучшие смазочные свойства. Основные показатели масел — вязкость, температура застывания, зольность, кислотность, содержание механических примесей и воды, а также температура вспышки. Смазочные материалы должны отвечать следующим основным требованиям обладать хорошей смазочной способностью, не изменять фи-зико-химических свойств при нормальной работе MamnHbi (не образовывать смол) защищать детали от коррозии даже при продолжительной остановке крана не застывать при низких температурах не содержать воды и механических примесей не менять состава при продолжительном хранении.  [c.176]

Величину нагрузки, действующей на подшипник. Устойчивость (прочность) масляной пленки минеральных масел повышается с увеличением их вязкости, а для смазок — с увеличением их консистентности. Поэтому чем выше нагрузка, тем большей вязкостью (консистентностью) должны обладать применяемые масла (смазки).  [c.371]


Смотреть страницы где упоминается термин Вязкость масел, смазок : [c.317]    [c.24]    [c.87]    [c.490]    [c.30]    [c.444]    [c.302]    [c.152]    [c.37]    [c.177]    [c.277]   
Справочник механика заводов цветной металлургии (1981) -- [ c.97 , c.98 , c.101 ]



ПОИСК



Вязкость масла

Зубчатые передачи 629 — Допуски 792 — Классификация предельная 695 — Смазка Выбор вязкости масла

Подшипники Смазка •— Выбор вязкости смазочных масел

Смазка авиационных двигателей Определение вязкости масла

Смазка вязкость

Смазки и масла



© 2025 Mash-xxl.info Реклама на сайте