Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Компрессоры газовые характеристики

Лопатки компрессоров. На лопатки как осевых, так и центробежных компрессоров обычно действуют значительные вибрационные нагрузки. В связи с этим основными требованиями являются высокая усталостная прочность материала и его способность к демпфированию колебаний. Поскольку в компрессорах конструкционное демпфирование играет сравнительно меньшую роль по сравнению с аэродинамическим, а иногда и демпфированием в материале, то выбор материала лопаток и режима его термообработки проводят с учетом требования получения декремента затухания максимально возможного значения. Следует иметь в виду, что логарифмический декремент затухания колебаний у широко применяемых для лопаток хромистых сталей с повышением температуры, уровня вибрационных и растягивающих напряжений увеличивается. Тем не менее вибрационные напряжения в рабочих лопатках иногда достигают 200 МПа. Так, повреждения от ударов посторонним предметом или коррозионные повреждения (коррозионное растрескивание) являются концентраторами, резко снижающими усталостную прочность лопаток. Поэтому используются все меры, позволяющие повысить предел усталости, в частности соответствующая обработка поверхности. Требования коррозионной стойкости материала и его сопротивления коррозионной усталости являются особенно важными для компрессоров газовых турбин, работающих в морских условиях. Материал компрессорных лопаток, работающих на загрязненном воздухе, должен противостоять эрозии. В противном случае сопротивление эрозии должно обеспечиваться применением специальных покрытий. Под действием центробежных сил в лопатках возникают растягивающие напряжения, поэтому материал должен также обладать определенным уровнем прочностных свойств при рабочих температурах. Особенно существенным становится это требование для высокооборотных компрессоров. В компрессорах с большими степенями сжатия температура лопаток может достигать уровня, при котором необходимо учитывать изменение характеристик материала во времени, в частности сопротивление ползучести.  [c.40]


Линейные демпферы, выполняемые в виде различного типа упругих опор с линейной характеристикой (у газовых и паровых турбин, турбокомпрессоров, компрессоров, центрифуг и т.д.).  [c.54]

Турбокомпрессоры работают хорошо при незначительном диапазоне изменений числа оборотов двигателя, как, например, в тепловозах с электрической передачей. Если же обороты двигателя изменяются в широких границах, например, в тепловозах с механической передачей, то турбокомпрессоры неприменимы, что следует из примерных характеристик газовой турбины (фиг. 26, а) и компрессора  [c.511]

Фиг. 26. Характеристика центробежного нагнетателя при п уаг а — газовой турбины 6 — компрессора. Фиг. 26. Характеристика <a href="/info/77017">центробежного нагнетателя</a> при п уаг а — <a href="/info/884">газовой турбины</a> 6 — компрессора.
Среди различных вариантов схем, рассчитанных на работу турбины на смеси продуктов сгорания с водяным паром, особое место занимает схема с генерацией пара только за счет отходящего тепла [Л. 1-4]. Мощностные характеристики у этой схемы не хуже, чем у схемы с впрыском воды в газовый тракт (если количество впрыскиваемой воды не превыщает 8—20% весового расхода воздуха, подаваемого компрессором). Но с термодинамической точки зрения схема с котлом-утилизатором, генерирующим пар, подаваемый в газовый тракт, как правило, соверщеннее схемы с впрыском воды (при выборе умеренных степеней сжатия она приближается по оптимальному к. п. д. к ГТУ с развитой регенерацией), а по характеристикам переменных режимов, показателям капитальных вложений и по предельной мощности превосходит эти газотурбинные установки.  [c.14]

Основой выбора газового теплоносителя служат технико-экономические показатели, учитывающие теплопередающие свойства (в условиях реакторов и теплообменников), термодинамические свойства, определяющие возможный к. п. д. цикла и теплофизические свойства, влияющие на конструктивные характеристики турбин и компрессоров (число ступеней, число выхлопов, длина лопаток и др.).  [c.51]


Таким образом, небольшие изменения в конструкции проточной части газовой турбины позволяют получить совместную характеристику газовой турбины и компрессора с рабочей точкой, достаточно удаленной от помпажной зоны, что обеспечивает надежную работу компрессора при возможных в условиях эксплуатации значительных изменениях сопротивления ВПГ. Получение надежной рабочей характеристики компрессора с газовой турбиной возможно и путем переделки проточной части компрессора с целью уменьшения расхода воздуха или отдаления зоны помпажа, но при большом числе ступеней компрессора такой путь будет более сложным.  [c.102]

Рис. 56. Совместная характеристика газовой турбины и компрессора ГТ-700-4 в схеме ПГУ на расчетном режиме Рис. 56. Совместная <a href="/info/529725">характеристика газовой турбины</a> и компрессора ГТ-700-4 в схеме ПГУ на расчетном режиме
Бовери мощностью 6—7 МВт с параметрами газа 4,5—5,5 ата и 650—750° С пускаются из холодного состояния до полной нагрузки за 13—15 мин. Пиковая ГТУ Стал—Лаваль мощностью 40 МВт пускается за 10 мин. Входящая в состав ПГУ с ВПГ-120 газотурбинная установка ГТ-700-4 не проектировалась для условий ПГУ. Металлоемкость ее равна 16 кг/кВт вместо возможных 3—5 кг/кВт. Мощность пускового двигателя 300 кВт недостаточна для быстрого пуска ПГУ. Рабочая характеристика компрессора и вибрационные характеристики газовой турбины и компрессора также лимитируют скорость пуска.  [c.158]

Расход воздуха через компрессор (в кг/с) выражается через приведенный расход О, соответствующий определенной степени сжатия на универсальной характеристике компрессора и газовой турбины  [c.224]

Момент перехода от одной ступени оборотов на следующую определяется температурой газов перед газовой турбиной, чтобы при увеличении оборотов не перегружать длительно разгонный двигатель. Быстрый подъем температуры газов путем увеличения расхода топлива лимитируется недостатком воздуха от компрессора при малых оборотах и медленном повышении параметров пара в ВПГ по условиям прогрева паропроводов. Поэтому подъем температуры газов перед газовой турбиной носит длительный характер из-за охлаждения продуктов сгорания поверхностями нагрева и сравнительно медленного повышения параметров пара в ВПГ. Принятые ступени числа оборотов обусловлены вибрационными характеристиками рабочих лопаток компрессора,  [c.115]

Рис. 68. Совместная аэродинамическая характеристика компрессора и газовой турбины. Рис. 68. Совместная <a href="/info/223470">аэродинамическая характеристика</a> компрессора и газовой турбины.
Как видно из совместной аэродинамической характеристики воздушного компрессора и газовой турбины при работе в парогазовом цикле (см. рис. 68) при снижении температуры газов перед газовой турбиной, производительность компрессора увеличивается. Зависимости определены при температуре наружного воздуха -f25° . Рабочая точка компрессора при температуре газов перед турбиной 480°С находилась в точке /, рабочая точка газовой турбины — в точке 2.  [c.150]

Потребная мощность мотора компрессора (62.5) пропорциональна произведению МР . Пропорциональность мощности квадрату числа Р есть основная причина того, что в аэродинамических трубах соблюдение подобия по Р часто не представляется возможным. В установках для исследования решеток с высокими числами М в области слабой зависимости характеристик потока от числа Р целесообразно задавать Р меньше натурного, так как это значительно уменьшает величину N. Из выражения (62.5) очевидна также возможность уменьшения М, при прочих равных условиях, путем применения (в замкнутой системе) газов с большим молекулярным весом и, соответственно, малой величиной газовой постоянной R. По тем же соображениям целесообразно также увеличивать давление р и, в особенности, уменьшать температуру Т ). Наконец, весьма существенным является повышение коэффициента аэродинамического качества установки р. В некоторых аэродинамических трубах, имеющих диффузор за рабочей частью, этот коэффициент достигает 3. В известных установках для исследования решеток, по крайней мере до 1949 г., диффузор не применялся и коэффициент р был меньше 1.  [c.481]


Теория авиационных компрессоров и газовых турбин (теория лопаточных машин) является первой частью общего курса теории двигателей летательных аппаратов. Она представляет самостоятельную научную дисциплину, без знания которой невозможно глубокое изучение теории современных газотурбинных двигателей (ГТД) и их эксплуатационных характеристик.  [c.3]

В учебнике излагается теория основных типов компрессоров и газовых турбин, применяемых в авиационных ГТД. Учебник предназначен для вузов гражданской авиации при подготовке специалистов по эксплуатации самолетов и двигателей, поэтому в нем основное внимание уделено рассмотрению физической сущности процессов и явлений, протекающих в компрессорах и турбинах, их эксплуатационных характеристик. Методы газодинамических расчетов компрессоров и турбин рассматриваются в специальных учебных пособиях. Поэтому здесь излагаются только основы этих расчетов.  [c.3]

Методика по своему построению аналогична приведенной в гл. 4 методике приближенного расчета характеристик многоступенчатых компрессоров и основана на анализе ряда характеристик одно- и многоступенчатых газовых турбин,  [c.232]

Газотурбинные электростанции в СССР в качестве самостоятельных энергетических установок получили ограниченное распространение. Серийные газотурбинные установки (ГТУ) обладают невысокой экономичностью, потребляют, как правило, высококачественное топливо (жидкое или газообразное). При малых капитальных затратах на сооружение они характеризуются высокой маневренностью, поэтому в некоторых странах, например в США, их используют в качестве пиковых энергоустановок. ГТУ имеют по сравнению с паровыми турбинами повышенные шумовые характеристики, требующие дополнительной звукоизоляции машинного отделения и воздухозаборных устройств. Воздушный компрессор потребляет значительную долю (50—60%) внутренней мощности газовой турбины. Вслед-  [c.293]

Рис. 6-9, Характеристика совместной работы газовой турбины и компрессора. Рис. 6-9, Характеристика совместной <a href="/info/679768">работы газовой турбины</a> и компрессора.
Газовые турбины как работающие отдельно, так и в сочетании с компрессорами, имеют свои специфические режимные характеристики, без правильного учета которых эффективность их применения может уменьшиться во много раз. Надо учитывать и специфику совместной работы технологического агрегата с газовой турбиной. Для правильного построения системы (агрегата), в которую входит ГТУ, надо учитывать характеристики газовых турбин.  [c.184]

Уравнение (10.1), полученное на основании теории Эйлера, выражает закон количества движения, поэтому оно верно для любого потока идеальной или вязкой жидкости. Справедливо оно и для всех типов лопаточных машин паровых и газовых турбин, детандеров, насосов (центробежных и осевых), центробежных и осевых компрессоров как идеальных, так и реальных. Уравнение (10.1) описывает обмен энергией между потоком газа и лопаточным аппаратом в любом направлении, поэтому, используя его, можно анализировать свойства и характеристики ТК и производить их пересчет при изменяющихся условиях, что очень важно для правильного выбора и эксплуатации ТК-  [c.199]

Важной характеристикой осевого компрессора является граница помпа-жа, связанная с явлением помпажа. В процессе работы осевого компрессора возникают возмущения, вызываемые изменениями как частоты вращения, так и сопротивления сети — газовой турбины. Они могут вывести систему компрессор — ГТ из равновесия. Важным показателем этой системы является аккумулирующая способность сети, определяемая возможностью накопления некоего избыточного рабочего тела по сравнению с его установившимся течением. На этот процесс может повлиять также изменение плотности воздуха. В такой системе могут развиваться режимы с вращающимся срывом потока, нарушающие устойчивость течения и приводящие к пульсациям. Эти явления возникают, в частности, при снижении расхода рабочего тела и уменьшении частоты вращения. При дальнейшем снижении расхода в отдельных зонах проточной части компрессора создается устойчивый вращающийся срыв потока, который сильно замедляется, и может иметь место обратное течение ( .j < 0). Развитие этого вращающегося срыва при дальнейшем уменьшении расхода в конце концов приводит к полной потере устойчивости потока и появлению колебаний давления в системе компрессор — ГТ, т.е. возникает помпаж. Это явление характеризуется нарастающим гулом в работающем компрессоре, хлопками в заборном устройстве и выбросом воздуха, появлением вибраций лопаточного аппарата вплоть до его разрушения. Одновременно резко падает КПД компрессора, поэтому явление помпажа недопустимо даже кратковременно  [c.50]

Компрессор обычно подключается к системе трубопроводов, на которых установлены запорные, регулирующие и другие устройства. Совокупность этих устройств и трубопроводов называется сетью. Гидравлические свойства сети определяются ее характеристикой, т.е. зависимостью между расходом и давлением в сети. Характеристика большинства газовых сетей имеет вид параболы.  [c.266]

В устройствах, работающих по замкнутому циклу, в том числе и в двигателе Стирлинга, необходимо избегать потерь рабочего тела, поскольку такие потери снижают среднее давление цикла и, следовательно, выходную мощность. Имеется много путей для просачивания рабочего тела из внутренней полости двигателя например, водород под действием высоких давлений и температур будет диффундировать сквозь металлические перегородки, изготовленные из больщинства металлов и сплавов (особенно это относится к нержавеющей стали). Однако чаще всего основной причиной утечки является просачивание газа под давлением около поршней и их штоков. На первый взгляд такую утечку можно ликвидировать, установив обычные уплотнения, т. е. металлические кольца или кольца из шнура, поскольку, например, газовые компрессоры работают при давлениях, превышающих давление в двигателях Стирлинга. Однако рабочие температуры в двигателях Стирлинга выше, чем в компрессорах, и это усложняет решение проблемы уплотнений. В двигателях внутреннего сгорания рабочие температуры сопоставимы с температурами в двигателях Стирлинга, однако в двигателях Стирлинга уплотнения должны работать в атмосфе ре, не содержащей масла, поскольку при попадании масла из картера в рабочие полости происходит его пиролиз и образование углеродных отложений, засоряющих теплообменники и особенно высокопористые регенераторы. Кроме того, масло в картере может загрязняться просачивающимся рабочим телом. Усовершенствование уплотнений не должно производиться за счет увеличения трения, поскольку это может привести к недопустимому падению рабочих характеристик на валу двигателя. Из сказанного видно, что создание работоспособной конструкции уплотнения для двигателей Стирлинга с высоким внутренним давлением представляет достаточно серьезную проблему. Этот вопрос рассматривается в разд. 1.7. Необходимо уяснить, что использование газообразного рабочего тела, находящегося под высоким давлением, делает чрезвычайно вероятной утечку газа безотносительно к степени совершенства уплотняющих устройств. Следовательно, чтобы поддерживать выходную мощность двигателя на одном уровне в течение длительного периода эксплуатации, такая утечка должна компенсироваться. Практически это означает, что на двигателях Стирлинга с высоким давлением должен быть установлен компрессор, автоматически нагнетающий сжатый газ в двигатель при падении давления цикла ниже определенного уровня иными словами, должен быть обеспечен процесс подкачки . Компрессор может быть расположен как внутри двигателя, так и вне его. В двигателе с косой шайбой Форд — Филипс имеется внутренний поршневой компрессор, состоящий из небольших порш-  [c.81]


Двухвальная газовая турбина может также быть названа тазовой турбиной со свободным рабочим колесом. Расширитель турбины имеет две ступени, связанные газовым потоком, а не жестким валом. Первая ступень служит для привода компрессора, а вторая — для привода рабочего вала. Такая схема менее перспективна, чем предыдущая, но ее характеристики лучше изучены. Схематическое изображение установки дано на рис. 1.109.  [c.127]

В публикуемых статьях рассматриваются теория сверхзвукового газового эжектора с цилиндрической камерой смешения, процесс перестройки режимов работы ступени в осевом многоступенчатом компрессоре и причины разрыва характеристик ступени компрессора с большим относительным диаметром втулки.  [c.2]

Когда в КДВС с газовой связью на входе в цилиндр не может быть получено необходимое давление заряда, его вторично сжимают в компрессоре с приводом от вала порщневой части или от газовой турбины. Такой тип двигателя обычно называют двигателями с двухступенчатым наддувом (рис. 5.15,6). В этом случае не только повышается давление воздуха или смеси на входе в цилиндр, но и, улучшаются условия работы турбины и компрессора и характеристики КДВС.  [c.239]

Более продолжительная непрерывная работа ПГУ не могла быть допущена, поскольку рабочая характеристика компрессора приблизилась к зоне полшажа. Сопротивление газовоздушного тракта компрессор — газовая турбина и экономайзер также носит нарастающий характер.  [c.135]

Материалы с высоким уровнем рассеяния энергии. При ударе по колоколу , изготовленному из специального сплава меди и марганца, вместо звона слышится глухой стук. В амортизирующих опорах часто используют резину это отчасти связано с ее высокими демпфирз ющимн характеристиками. Лопатки компрессоров газовых турбин иногда изготавливают из волокнистых полимерных материалов, обладаюхцих значительным внутренним трением.  [c.48]

I) Количество тепла, снимаемого с единицы поперечного сечения канала при неизменности доли затрат на перекачку (2%) и других характеристик (/ = 426° С, Ы=Ш°С, М=111°С, р = 20,9 бар, 1 = 2,19 Л1), увеличивается в 10 раз за счет повышения весовой концентрации от О до 15 кг/кг. 2) Температура нагрева теплоносителя t" в том же диапазоне концентраций растет от 650 до 730°С (газ — азот), а прирост температуры вследствие возросшей теплоемкости упал с 222 до 28° С (условия сравнения /ст = 870°С, Л кан=24 кет, Окан=13,5 мм, р и L те же). 3) К- п. д. двухконтурной установки с газовой турбиной для тех же условий, что в п. 2, повышается от 19 до 27% (к. п. д. компрессора принято 0,83, турбины 0,87, а регенератора 0,8).  [c.397]

Одной из основных характеристик надежности лопаток компрессора газотурбинных двигателей (ГТД) является их предел выносливости. В результате процессов газовой и электрохимической коррозии, протекающих на поверхности лопаток компрессора, изготовленных из жаропрочных хромистых сталей мартенситного класса типа марки 13Х11Н2В2МФ, предел выносливости может уменьшиться в 3 раза.  [c.164]

Пусть к конструкции блока предъявляются повышенные весовые и особенно габаритные требования, что имеет место, например, в авиации. В соответствии с этим в результате довольно интенсивного развития газотурбинных двигателей перешли от четырехопорных схем роторов к трехопорным, как наиболее рациональным, улучшившим габаритные и весовые характеристики силовых установок. Первоначальные конструкции были по существу механическим соединением двух самостоятельных агрегатов компрессора того или другого типа и газовой турбины лишь позже появились конструкции, в которых органически слиты между собой оба агрегата. Представляется, что и агрегаты типа турбогенераторов, если к ним предъявляются повышенные требования с точки зрения габаритов и веса, что определяется их назначением, должны также пройти аналогичный путь своего конструктивного совершенствования. Однако выбор типа ротора для двухмашинного агрегата важен также и с точки зрения получения у него хорйших вибро-акустичсских характеристик. В этой связи мы и отметим положительные и отрицательные свойства агрегатов с трехроторным и четырехроторным ротором.  [c.454]

Наиболее исследованы характеристики высокотемпературной ПГУ по схеме ЦКТИ—ЛПИ [13 47 48 49]. Такая установка в простейшем варианте (рис. 29) состоит из компрессоров низкого КНД и высокого КВД давления, предвключенной паровой турбины ППТ — привода КВД, камеры сгорания КС, высокотемпературной газовой турбины ГТ с двухконтурным охлаждением, конденсационной паровой турбины КПТ, котла-утилизатора КУ и конденсатора К.  [c.58]

Гидравлическое сопротивление газового тракта ВПГ больше, чем камеры сгорания ГТУ. Поэтому рабочая точка совместной характеристики газовой турбины и компрессора приближается к помпажной зоне компрессора, что может привести к его неус-  [c.101]

На рис. 56 представлена совмеетная характеристика газовой турбины и компрессора ГТ-700-4 в автономном газотурбинном цикле (линия /) и в цикле ПГУ с ВПГ (линия 2).  [c.102]

Время пуска ГТУ до выхода на холостой ход в газотурбинном цикле с камерой сгорания составляет 1 ч. Автономный пуск ГТУ происходит с длительными приостановками на режимах 280 и 1600 об/мин. Время перехода с одного режима на другой около 3 мин, причем при разгоне от 300 об/мин температура газов перед турбиной равна 300° С. Вибрационные характеристики облопа-чивания газовой турбины и компрессора не допускают длительной работы на малых оборотах, за исключением 300, 1200 и 1500 об/мин. Это не позволяет использовать возможности пускового двигателя мощностью 300 кВт работать без перегрузки при частоте вращения 750—800 об/мин, при которой за счет увеличения расхода воздуха и топлива можно было бы вести прогрев ГТУ и ВПГ более интенсивно, сократив длительность пуска.  [c.159]

Большинство систем охлаждения газовых турбин предусматривает использование воздуха, отобранного из последних ступеней компрессора, для охлаждения термонапряженных элементов проточной части. Обычно конструктивные схемы трактов охлаждающего воздуха обеспечивают выброс хладо-агёнта в различные участки основного газового потока. Это вызывает частичное изменение в характере обтекания профилей, влияет на газодинамические характеристики рещэтки, изменяет поля скоростей, давлений, увеличивает потери и снижает общий к. п. д. лопаточного венца. Поэтому исследование процессов смещения и сопутствующих им явлений на лопаточном аппарате газовой турбины представляет значительный интерес.  [c.215]

ЛМЗ для газовой промышленности изготовил небольшую серию ГТУ мощностью 9000 кет (ГТН-9). Этот агрегат был запроектпрован двухвальным (с разрезным валом) с регенерацией. Расчетная начальная температура газов для него была принята 750° С, степень сжатия компрессора 4,6. Испытания установок на заводском стенде под полной нагрузкой показали, что их характеристики соответствуют расчетным.  [c.58]

Влияние пара связано с тем, что его теплофизические свойства, газовая постоянная R и показатель адиабаты k отличаются от теплофизических свойств сухого воздуха. Показатели адиабаты пара и сухого воздуха близки друг к другу. Поэтому, в основном, влияние пара на характеристики компрессора связано с различием (газовая постоянная водяного пара i HsO = 462Дж/(кг-К), а сухого воздуха = 287 Дж/(кг-К))-  [c.133]


В книге уделяется внимание рассмотрению ряда важных вопросов, которые до последнего времени мало освещались в учебной литературе для авиационных высших технических учебных заведений особенностям характеристик двухвальных ДТРД, в том числе при большой степени двухконтурности оценке влияния на работу и параметры двигателя потерь по воздушно-газовому тракту, а также наружных условий (включая влажность атмосферы) методам борьбы с неустойчивой работой компрессора характеристикам по уровню шума кратким сведениям по эксплуатационной надежности двигателя.  [c.2]

Представления о подобии течений газовых потоков служат теоретической предпосылкой для построения характеристик не только компрессоров, но и ряда других элементов ВРД (турбин, входных и выходных устройств и т. п.), являются также основанием для экс-перимеятального получения характеристик отдельных элементов двигателя путем испытания их моделей.  [c.122]

Не повторяя выводов, приведенных в гл. 4 применительно к компрессору, укажем, что для геометрически подобных турбин в качестве критериальных параметров могут использоваться, например, Лг, т, 9( г), ки, Ят, Ят Т]ад.т, 11т. bjRTr И т. Д. Влияние неравномерности и нестационарности потока, а также охлаждения лопз-ток (при охл = onst) на характеристики турбин обычно невелико. Газовая постоянная продуктов сгорания топлив нефтяного происхождения в условиях ГТД изменяется обычно не более, чем на  [c.224]

Балансовые уравнения позволяют нанести на характеристику осевого компрессора линии начальной температуры газов перед газовой турбиной и соответствующего расхода топлива по уравнению теплового баланса КС. Каждая режимная линия должна удовлетворять балансу мощности. Ход режимных линий энергетических ГТУ зависит также от конструктивной схемы установки и характеризуется условием п = onst.  [c.190]

На фиг. 74, б совмещены поля расходов дизеля и наиболее дешевого из современных компрессоров (и пригодного для спаривания с газовой турбиной) центробежного компрессора с безлонаточным диффузором. Взята реальная характеристика компрессора, предназначенного для наддува дизеля Д-6.  [c.364]

Осевой компрессор, фиг. 74, г, для малых расходов обычно не применяется. Он удовлетворяет требованиям только двух потребителей — дизель-генераторной установки и судового дизеля. Если сдвинуть характеристики вправо, этот компрессор идеально удовлетворяет требованиям судового двигателя. Из приведенного анализа следует, что требованиям дизелей всех типов удовлетворяют объемны11 винтовой компрессор и центробежный компрессор с безлонаточным диффузором. Достаточно универсальным является центробежный компрессор с лопаточным диффузором. В связи с тем, что объемный компрессор непригоден для спаривания с газовой турбиной, он применяется сравнительно редко. Применение этого компрессора по-видимому будет иметь место в тех случаях, когда необходимо обеспечить относительно высокие давления на очень малых оборотах и пусковых режимах.  [c.364]


Смотреть страницы где упоминается термин Компрессоры газовые характеристики : [c.129]    [c.173]    [c.215]    [c.179]    [c.128]    [c.359]   
Справочник энергетика промышленных предприятий Том 3 (1965) -- [ c.434 , c.440 ]



ПОИСК



X Характеристика компрессора

Газовые компрессоры

Компрессорий

Компрессоры

Совместная работа газовой турбины и компрессора в составе турбокомпрессора и его характеристика

Характеристика газовые

Характеристики компрессоров и газовых турбин



© 2025 Mash-xxl.info Реклама на сайте