Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Преобразователи в дефектоскопии

Регистраторы, оптические и звуковые индикаторы могут быть введены в дефектоскоп без принципиального изменения его конструкции, если преобразователи в дефектоскопе включены по раздельной схеме. При включении  [c.251]

Регистраторы, оптические и звуковые индикаторы могут быть введены в дефектоскоп без принципиального изменения его конструкции, если преобразователи в дефектоскопе включены по раздельной схеме. При включении преобразователей по совмещенной схеме для введения этих индикаторов требуется стробирование исследуемого импульса (рис. 58, а).  [c.251]


Преобразователь совмещенный 292 - Акустическое поле 293 - Акустический тракт 293 - 295 - Акустические характеристики материалов 296 - Диаграмма направленности 293 - Поле излучения-приема 295 Преобразователи в дефектоскопии 330  [c.473]

При изготовлении демпферов преобразователей ультразвуковых дефектоскопов часто используют гетерогенные материалы в виде эпоксидной смолы или другого материала и порошкообразного наполнителя с размером  [c.195]

Форма, длительность и амплитуда излучаемого (зондирующего) импульса определяются его спектром. Ударный генератор во взаимодействии с колебательным контуром (в который входит пьезоэлемент) вырабатывает быстро затухающий импульс синусоидальных электрических колебаний. Спектр этого импульса существенно искажается при трансформации преобразователем электрических колебаний в акустические и обратно, прохождении через контактные слои преобразователь — изделие, распространении в изделии, отражении от дефекта и усилении приемным трактом дефектоскопа. Наименьшие искажения претерпевает радиочастотный колоколообразный импульс, но генераторы для их возбуждения в дефектоскопах применяются редко.  [c.241]

Преобразователи. Совмещенные преобразователи импедансных дефектоскопов делят на абсолютные и дифференциальные (рис. 98). В абсолютном преобразователе в режиме холостого хода (Zh = 0) амплитуда выходного напряжения пропорциональна инерционному  [c.297]

Контактные наконечники изготовляют из износостойких материалов корунда, закаленной стали и т. п. В дефектоскопе АД-40И преобразователь прижимается пружиной с постоянной силой, при этом обеспечивается перпендикулярность оси преобразователя к поверхности изделия.  [c.297]

Расчет коэффициентов прохождения продольной Di и поперечной Dt волн по энергии для границы плексиглас—сталь, рассчитанные по формулам (1.35) и (1.36), представлен на рис. 1.12. В области малых углов падения (О. .. 10°) в стали существует практически только продольная волна. Эту область используют для возбуждения продольных воли раздельно-совмещенными преобразователями. Далее, вплоть до первого критического угла, идет область одновременного существования волн двух типов. Эту область углов в дефектоскопии используют редко. При первом критическом угле наиболее интенсивно возбуждается головная волна. В интервале между первым и вторым критическими углами существует только поперечная волна. Эту область наиболее часто используют в дефектоскопии для возбуждения в контролируемом материале поперечных волн. За вторым критическим углом при определенном угле падения возбуждается поверхностная волна.  [c.27]


При проектировании преобразователя обычно ставят задачу сжатия его диаграммы направленности в дальней зоне, уменьшения боковых лепестков, сглаживания осцилляций в ближней зоне. При этом нежелательно увеличение размеров преобразователя, так как это расширяет поперечное сечение поля в ближней зоне и затрудняет контакт преобразователя с поверхностью изделия. Нежелательно также уменьшение площади рабочей поверхности, так как это снижает чувствительность. Все эти требования выполнить одновременно не удается. Например, кольцеобразный преобразователь имеет более узкую диаграмму направленности, чем дискообразный и преобразователи другой формы, при одинаковых внешних размерах. Однако уровень помех от боковых лепестков увеличивается, наблюдаются значительные осцилляции в ближней зоне, и уменьшается полезная площадь. По этим причинам кольцеобразный преобразователь редко применяют в дефектоскопии.  [c.82]

Генератор радиоимпульсов предназначен для формирования высокочастотных электрических импульсов, используемых для возбуждения УЗ-колебаний в преобразователе. До последнего времени наиболее часто применяли схемы генераторов радиоимпульсов с контуром ударного возбуждения. В дефектоскопах, созданных недавно, чаще используют схемы, позволяющие получать радиоимпульсы с колоколообразной огибающей, характеризующиеся большим КПД и наиболее узким спектром при заданной длительности.  [c.181]

Для измерения интервала времени Т при определении координат отражателя обычно используют метод максимума, предусматривающий установку преобразователей в положение, соответствующее максимальной амплитуде отраженного сигнала. Как правило, максимум амплитуды отраженного сигнала определяют по экрану трубки. Исключением являются дефектоскопы, выпускаемые в СССР с начала 80-х годов и оснаш,енные звуковым индикатором, мощность звука которого пропорциональна амплитуде отраженного сигнала.  [c.184]

Образец СО-1 (рис. 4.7, а) предназначен для настройки условной чувствительности дефектоскопа с преобразователем (преобразователь в положении А), а также для проверки работоспособно-  [c.189]

Угол ао — угол ввода (угол наклона акустической оси) УЗ колебаний, точка О на приЗме преобразователя — точка выхода ультразвукового луча. Большая часть энергии излучения сосредоточена в основном лепестке (до 80%), поэтому в дефектоскопии обычно ограничиваются рассмотрением только основного лепестка диаграммы.  [c.24]

Дефектоскоп состоит из блока электроники, четырех сменных преобразователей (в зависимости от модификации прибора) и выносного светового индикатора. Преобразователи накладного типа, контактные. Режим работы — ручной. Прибор используется в цеховых и лабораторных условиях на предприятиях машиностроения.  [c.233]

В вихретоковых дефектоскопах (табл. 8.78) используются проходные или накладные вихретоковые преобразователи (ВТП). Дефектоскопы с проходными преобразователями применяют обычно для высокоскоростного контроля качества проволоки, прутков, труб, шариков и роликов подшипников и других изделий. Дефектоскопы с накладными преобразователями применяют для контроля плоских изделий (листов, лент, пластин и т.п.), а также для контроля цилиндрических изделий с использованием сканирующих устройств, обеспечивающих вращательное движение преобразователя по отношению к объекту контроля [38].  [c.378]

При определении модулей упругости импульсными методами, независимо от того, используется ли при этом сквозное прозвучи-вание или локационный принцип, чаще всего возбуждают высокочастотные импульсы продольных или поперечных колебаний с помощью пьезоэлектрических преобразователей. Импульсные методы широко применяются при определении констант упругости монокристаллов и в дефектоскопии. Время прохождения импульсом заданного расстояния измеряют по развертке на осциллографе, куда посылают сигналы датчик возбуждений и приемный датчик. Датчики имеют акустический контакт с образцом, что легко осуществимо при температурах, близких к комнатной, но требует применения специальных переходников в случае экспериментов, проводимых при повышенных температурах.  [c.207]

В дефектоскопах типа МРД-52 и МРД-66 используются феррозонды, представляющие собой катушку с пер-маллоевым сердечником длиной 7 мм и диаметром 0,25 мм. В дефектоскопе МРД-72 пермаллоевый сердечник феррозонда имеет длину 2 мм и диаметр 0,1 мм. Боковые преобразователи в дефектоскопах МРД-52 и МРД-66 применяют для вторичного контроля показаний верхних искателей с целью разделения сигналов от опасных дефектов типа поперечных усталостных трещин и неопасных повреждений или структурных неоднородностей метал-  [c.57]


Образец СО-1 (рис. 4.10) предназначен для определения условной чувствительности дефектоскопа с преобразователем (преобразователь в положении А), а также для определения погрешности глубиномера (преобразователь в положении Б) и проверки разрешающей способности при работе прямым или наклонным преобразователем. Условная чувствительность Ку дефектоскопа с преобразователем, измеренная по образцу СО-1, выражается максимальной глубиной расположения (в миллиметрах) цилиндрического отражателя, уверено фиксируемого индикаторами дефектоскопа. Глубина расположения отражателя показана цифрами на обргоце. Согласно ГОСТ 14782 исходный и выпускаемые государственные стандартные образцы изготавливают из органического стекла с единым значением коэффициента затухания продольной волны при частоте 2,5 МГц 10%, лежащим в пределах 0,26...0,34 мм .  [c.205]

Развитие электроники, электроакустики, измерительной техники привело в последние юды к интенсивному развитию новых областей физики диэлектриков. Одно из таких направлений связано с изучением линейного взаимодействия электрических, механических и тепловых нолей при ньезо- и пироэлектрическом эффекте. В настоящее время существуют различные технические устройства, в которых успешно используется явление пьезоэффекта. Пьезоэлектрические л атериалы широко применяются в дефектоскопии, в электроакустических преобразователях, в радиотехнических устройствах типа резонаторов, полосовых фильтров, ультразвуковых линий задержки и т. д. Особое внимание исследователей к таким материалам, как пьезоэлектрики, связано с явлением пьезоэффекта, обнаруженным братьями Кюри в 1880 г. Это явление состоит в том, что при деформировании кристаллов некоторых кристаллографических классов на их поверхностях появляются электрические заряды, пропорциональные величине деформации. Термодинамический анализ показывает существование обратного эффекта, который проявляется в возникновении механических напряжений в кристалле при действии электрического поля. Характерной особенностью пьезоэффекта является его связь  [c.69]

В дефектоскопе СН-10АФ, предназначенном для контроля дефектов клеевых соединений теплозащитных покрытий на металле, реализован указанный выше метод. Схема преобразователя дефектоскопа приведена на рис. 34.  [c.235]

Принцип действия дефектоскопа основан на построчном считывании с магнитной ленты полей, зафиксированных в процессе контроля сварных соединений и преобразований информации в электрические сигналы многоэлементным микроферрозондо-вым преобразователем, с последующей обработкой и частотной селекцией сигналов и регистрацией результатов на электрохимической бумаге. Запись сигналов ведется по четырем каналам — по одному каналу записывается плоскостное полутоновое изображение рельефа магнитного поля, записи по остальным каналам дают возможность судить по амплитуде сигнала от дефектов и их местоположении по толщине изделия. Получение в дефектоскопе двухмерного плоскостного изображения достигается за счет возвратно-поступательного движения по электрохимической бумаге подвижного электрода и пропускания через пишущие электроды (подвижный и неподвижный) электрического тока, пропорционального величине сигнала, поступающего с феррозондов. Подвижный электрод движется синхронно с движением феррозондов над магнитной лентой. Степень потемнения бумаги оказывается тем большей, чем больший по амплитуде сигнал снимается с феррозондов.  [c.46]

Существуют приемы для определения вида выявляемых дефектов. Один из них реализуется в дефектоскопах с разверткой магнитограммы на экране осциллографа, по которой можно судить о конфигурации дефектов. Другой прием основан на том факте, что поле поверхностных дефектов убывает с удалением от поверхности детали быстрее, чем поле внутренних дефектов. Это различие можно использовать, если на магнитную ленту записать поля дефектов сначала при плотном прижатии ее к поверхности детали, а затем через немагнитную прокладку толщиной 0,5—1 мм между магнитной лентой и деталью. Считываемый сигнал при этом от внутренних дефектов изменится значительно меньше, чем от поверхностных. Для различения наружных и вн.утренних дефектов могут быть использованы также такие приемы, как считывание информации с ленты на различных расстояниях от нее и использование в качестве преобразователей феррозондов-градиентометров с разной базой (разными расстояниями между их сердечниками).  [c.49]

В дефектоскопе ДК-1М имеется 14 однокатушечных индукционных преобразователей, которые включены последовательно-согласно по семь штук в подгруппы, соединенные, в свою очередь, встречно. Такое соединение преобразователей позволяет устранять помехи от вибраций трубы, а также выявлять короткие дефекты и дефекты с пологими краями.  [c.51]

Первой внедренной в промышленность была феррозондовая установка ФДУ-1 [10]. Наиболее универсальной и отработанной является модель ферро-зондового дефектоскопа типа МД-1СФ [20J, предназначенного для контроля бесшовных труб. В дефектоскопе имеется восемь вращающихся вокруг трубы феррозондовых преобразователей, сигналы которых, пропорциональные изменению магнитного поля дефектов, обрабатываются и регистрируются восьмиканальной аппаратурой с осцилло-грг.фическим индикатором и блоком автоматики. Дефектоскоп управляет работой устройства сортировки труб на годные и бракованные. Установка комплектуется серийно изготовляемыми выпрямителями ВАКГ-12/6-3000для намагничивания труб путем пропускания тока до 2000 А через контролируемый участок.  [c.54]

Автоматизированные феррозондовые дефектоскопы для контроля труб выпускает ин-т д-ра Ферстера в ФРГ. Дефектоскоп типа Дискомат-6251 предназначен для комбинированного контроля (методом вихревых токов и методом считывания полей дефектов) качества продольного сварного шва ферромагнитных труб с помощью вращающегося измерительного преобразователя в форме диска. Диаметр контролируемых изделий 57—600 мм, скорость контроля при сплошном сканировании— до 1,0 м/с. В дефектоскопе предусмотрены раздельная индикация внешних и внутренних дефектов, а также регулирование границ сортировки. К дефектоскопу можно подключать устройства для маркировки дефектных труб и оценки размеров дефектов, а также блок управления сортирующим устройством, производящим автоматическую разбраковку труб на две или три группы,  [c.57]


С помощью дифференциальных ВТП самосравнения можно резко повысить отношение сигнал/помеха в дефектоскопии. При этом обмотки преобразователя размещают так, чтобы их сигналы исходили от близко расположенных участков контроля одного объекта. Это позволяет уменьшить влияние плавных изменений электрофизических и геометрических параметров объектов. При использовании проходных преобразователей с однородным магнитным полем в зоне контроля значительно уменьшается влияние радиальных перемещений объекта. Применяя экранные накладные преобразователи, можно практически исключить влияние смещений объекта между возбуждающей и измерительной обмотками. Преобразователи с взаимно перпендикулярными осями обмоток (см. рис. 1, г) нечувствительны к изменению электрофизических характеристик однородных объектов. При нарушении однородности объекта, на-  [c.86]

Способ с совмещенным преобразователем. В импедансном дефектоскопе с совмещенным преобразователем (рис. 97) последний представляет собой стержень 1, на торцах которого размещены излучающий 2 и измерительный 3 пьезоэлементы. Между контролируемым изделием 4 и пьезоэлементом 3 находится контактный наконечник 5 со сферической поверхностью. Пьезоэлемент 2 соединен с генератором 6 синусоидального электрического напряжения, пьезоэлемент 3 — с усилителем 7. Масса 8 повышает мощность излучения в стержень 1. Генератор и усилитель соединены с блоком обработки сигнала 9, имеющим стрелочный индикатор 10 на выходе. Блок 9 управляет сигнальной лампоч-  [c.295]

Способ с раздельно-совмещенным преобразователем, В импедансном дефектоскопе с РС-пресбразователем (рис. 101) нреоГрззователь / содержит идентичные, раздельные, акустически и электрически изолированные друг от друга излучающий И и приемный П составные пьезовибраторы. Каждый вибратор состоит нз пьезоэлемента 2 в виде прямоугольного бруска с электродами на боковых сторонах (поперечный пьезоэффект) и накладок 3 и 4. Для повышения чувствительности база преобразователя уменьшена путем размещения контактных наконеч-  [c.299]

Выбор системы контроля. Аппаратуру для контроля методом эмиссии выпускают не в виде универсальной системы, а в виде типовых блоков, позволяюш,их обеспечить оптимальную систему контроля в зависимости от особенностей объекта испытаний и других условий (табл. 33 и 34). Выбирая систему контроля, ксследуют характеристики объекта испытаний с помощью имитатора источника сигнала, например излучающего преобразователя эхо-дефектоскопа, который перемещают по изделию. С помощью приемного преобразователя снимают характеристики ослабления сигналов с увеличением расстояния, что позволяет определить необходимую расстановку преобразователей. Далее определяют тип упругих волн, которые предполагается регистрировать, и скорость их распространения, что необходимо для выбора преобразователей и настройки системы локации источника сигнала.  [c.318]

В состав акустического дефектоскопа входит консоль с подъемным устройством, на котором находится каретка с преобразователями и дефектоотмет-чикамн. Преобразователи располагаются симметрично на расстоянии 100— 200 мм от шва. Установка может работать в три такта 1) преобразователь А работает в режиме излучения и приема 2) преобразователь В работает в режиме излучения и приема  [c.330]

В низкочастотных акустических дефектоскопах применяют сухой способ контакта путем соприкосновения поверхностей преобразователя и изделия без контактной жидкости. Этот способ используют при импедансном, велосиметрическом и других методах контроля, которые не находят применения в дефектоскопии металлов.  [c.59]

Импедансный метод существенно отличается от рассмотренных методов. Он основан на анализе изменения механического или входного акустического импеданса участка поверхности контролируемого объекта, с которым взаимодействует преобразователь. В низкочастотных импедансмых дефектоскопах преобразователем служит колеблющийся стержень, опирающийся на поверхность изделия (рис. 2.5, а). Между ними нет контактной жидкости (сухой контакт), Появление подповерхностного дефекта в виде расслоения делает расположенный над дефектом участок  [c.97]

Для возбуждения импульсов упругих колебаний с частотой f и приема их отражений в дефектоскопах используют в основном пьезоэлектрические преобразователи, реже — электромагнитноакустические.  [c.180]

Высокочастотные электрические колебания пьезопластиной преобразователя трансформируются в механические, которые при наличии акустического контакта вводятся в контролируемый объект. Дойдя до границы с какой-либо инородной средой (дефектом), эти колебания частично отражаются, регистрируются и преобразуются в приемном преобразователе в электрические импульсы, поступающие на вход приемно-усилительного тракта дефектоскопа.  [c.181]

С т а т и с т и ч е с к я е закономерности формирован я я с т р у к т у р к ы X п о м е X. Фазы импульсов, создающих структурные помехи, распределяются случайным образом, поэтому амплитуда структурных помех на преобразователе в определенный момент времени равновероятно имеет положительное или отрицательное значение, а среднее значение амплитуды разно нулю. Так как дефектоскоп регистрирует не знак, а абсолютное значение амплитуды, средний уровень помех определяется квадратным корнем из среднего кв ад рати чес кого значения амплитуды, которое пропорционально средней интенсивности сигнала помех /д. В дальнейшем помехи будем определять именно их интенсивностью н лишь при сравнении с полезными сигналами переходить к амп. гктуде.  [c.288]

Отмеченные особенности конструкции и свойств сварных соединений определяют различные методические решения их дефектоскопии. Поэтому ниже рассмотрены методические приемы при контроле сварных соединений разных типов, на дефектоско-пичность которых влияют один или несколько факторов. Разная кривизна поверхности сосудов (практически плоские поверхности) и труб малого и среднего диаметра (менее 500 мм) в определенной мере обусловливает различия в методиках их контроля. Ограниченная площадь сечения шва, большая кривизна поверхности и неровностей периодического профиля арматуры железобетона предопределяют нетрадиционную методику их контроля. Крупный размер зерна и высокая анизотропия механических свойств ау-стенитных швов существенно затрудняют проведение УЗ К, поэтому для повышения достоверности контроля таких швов применяют специальные преобразователи и дефектоскопы, обеспечивающие повышение амплитуды полезного сигнала. Трудность УЗК сварных швов, выполненных контактной, диффузионной сваркой и сваркой трением, заключается в различии дефекта типа слипания, прозрачного для ультразвука. Особую группу конструкций составляют угловые, тавровые и нахлесточные соединения, в которых иногда ограничен доступ к месту контроля, а возможное расположение опасных дефектов в шве затрудняют их обнаружение.  [c.316]

Сканирующие дефектоскопы с визуализацией изображения. В приборах этой группы сохранен принцип сканирования, присущий обычному ручному контролю. Приборы различают по двум основным признакам способу сканирования и типу изобрал ения. Сканирование можно выполнять вручную, но в этом случае обязательна связь между преобразователем и дефектоскопом, поскольку для визуализации необходима информация о полол ении преобразователя на поверхности изделия. В автоматических установках используют механическое и электронное сканирование. Последнее состоит в применении многоэлементного преобразователя либо большого числа параллельно действующих переключаемых преобразователей. Применяют также комбинированное сканирование, например ручное в продольном, механическое или электронное в поперечном направлениях либо механическое в продольном, электронное в поперечном направлениях.  [c.393]


Ультразвуковой контроль поковок, особенно крупногабаритных,— одно из наиболее эффективных применений УЗ в дефектоскопии. Структурные зерна металла поковки вытянуты в направлении течения его, что определяет ориентировку многих дефектов, представляющих тонкие плоские участки несплощиостей, такие дефекты практически невозможно выявить методами просвечивания. Проведение дефектоскопии должно быть предусмотрено на той стадии технологического процесса, когда поковка имеет наиболее простую геометрическую форму и максимальный припуск. Поверхности поковки, по которым перемещается преобразователь, при необходимости подвергают механической обработке.  [c.55]

В первой части книги представлены некоторые вопросы теории и практики методов, разрабатываемых в Отделе физики неразрушающего контроля АН БССР, а также результа-1Ы исследования физических процессов и явлений, протекающих в материалах при воздействии переменных и постоянных полей, статических и динамических нагрузок. В области теории нелинейных процессов в ферромагнетиках получены общие соотношения для расчетов гармонических составляющих э. д. с. накладных преобразователей в зависимости от коэрцитивной силы, максимальной и остаточной индукции при наложении постоянного и переменного полей. Даны обзор по теории феррозондов с поперечным и продольным возбуждением, практические рекомендации по их применению. Приведены результаты исследований магнитостатических полей рассеяния на макроскопических дефектах, обоснована возможность их моделирования, рассмотрены режимы записи указанных полей при магнитографической дефектоскопии, обеспечивающие максимальную выяв ляёмость дефектов. Анализируется характер изменения магнитных, механических и структурных свойств высоколегированных и жаропрочных сталей в зависимости от режимов термической обработки для обоснования метода контроля по градиенту остаточного поля ири импульсном локальном намагничивании, который широко используется при контроле механических свойств низкоуглеродистых сталей.  [c.3]

Используются два УЗ-блока с раздельно-совмещенными преобразователями. В каждом УЗ-блоке смонтировано четыре раздельно совмещенных искателя, работающих от дефектоскопа ДУК-66 (УД-10УА).  [c.243]


Смотреть страницы где упоминается термин Преобразователи в дефектоскопии : [c.55]    [c.140]    [c.297]    [c.185]    [c.191]    [c.248]    [c.437]    [c.346]    [c.112]    [c.60]    [c.180]   
Сварка Резка Контроль Справочник Том2 (2004) -- [ c.33 , c.474 ]



ПОИСК



Визуальный метод дефектоскопии рентгеновский преобразователь

Гамма-дефектоскопия электронно-оптический рентгеновский преобразователь

Дефектоскоп амплитудный — Структурная велоснметрический — Преобразователи 2 кн. 267—269 — Технические

Дефектоскопия

Дефектоскопы

Дефектоскопы - с накладными преобразователями

Дефектоскопы с проходными преобразователями

Преобразователь дефектоскопа

Преобразователь дефектоскопа



© 2025 Mash-xxl.info Реклама на сайте