Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравновешивание масс механизма

Распределение масс звеньев, устраняющее давление стойки на фундамент (или опору стойки) от сил инерции звеньев механизма, называется уравновешиванием масс механизма.  [c.133]

При уравновешивании масс-плоских механизмов часто ограничиваются выполнением условия (18.15), при котором равен нулю только главный вектор сил инерции звеньев механизма. Это условие равносильно требованию постоянства положения центра масс звеньев механизма относительно стойки. Распределение масс звеньев механизма, переводящее его центр масс в точку, неподвижную относительно стойки, называется статическим уравновешиванием масс механизма.  [c.330]


Приближенное статическое уравновешивание масс плоских механизмов. В некоторых случаях уравновешивание масс механизма приводит к неконструктивному расположению противовесов. Например, для статического уравновешивания кривошип-но-ползунного механизма необходимо поставить противовесы не только на кривошип, но и на шатун. Если ограничиться одним противовесом, установленным на кривошипе (рис. 98, а), то воз никает задача о приближенном статическом уравновешивании масс механизма, которую можно решить путем статического раз--мещения масс звеньев по точкам Л, В и С  [c.331]

Рассмотрен новый метод статического уравновешивания масс механизма, предложена новая схема, с помощью которой удается полностью уравновесить вращающиеся и поступательно движущиеся массы. Предложенную методику и схему уравновешивания рекомендуется применять в учебном процессе при изучении курса "Теория механизмов и машин .  [c.138]

При движении механизма в кинематических парах кроме статических возникают дополнительные усилия, так называемые динамические давления. Эти давления, будучи переменными по величине н направлению, являются причиной вибраций отдельных звеньев механизма. Станина механизма также испытывает динамические давления, которые передаются на связанный с ней фундамент, оказывая вредное действие на его крепления и нарушая тем самым связь станины с фундаментом кроме того, возникающие при движении механизма динамические давления увеличивают силы трения в точках опоры вращающихся валов, увеличивают износ подшипников и создают в отдельных частях механизма добавочные напряжения. Поэтому в процессе проектирования механизмов ставится задача полного или частичного погашения указанных динамических давлений. Эта задача называется задачей об уравновешивании масс механизмов или об уравновешивании сил инерции механизмов.  [c.162]

К первой задаче динамического анализа механизмов относится также вопрос об устранении дополнительных динамических нагрузок от сил инерции на опоры механизма соответствующим подбором масс звеньев. Этот вопрос рассматривается в теории уравновешивания масс в механизмах.  [c.204]

Уравновешивание масс звеньев механизма на фундаменте  [c.275]

УРАВНОВЕШИВАНИЕ МАСС ЗВЕНЬЕВ МЕХАНИЗМА 277  [c.277]


Г. Как было показано в 59, для уравновешивания главного вектора сил инерции механизма необходимо удовлетворить условию постоянства координат центра. масс механизма. В настоящем параграфе рассмотрим вопрос об определении положения центра масс механизма.  [c.280]

Уравнение движения механизма 59, 65 Уравновешивание масс 98 Усталость материалов 223 Устойчивость 122, 209  [c.483]

Балансировкой назьшается уравновешивание вращающихся или поступательно движущихся масс механизмов, с тем чтобы устранить влияние сил инерции. В настоящем параграфе рассматривается только балансировка вращающихся деталей машин.  [c.166]

Решения задачи об уравновешивании давлений машины на фундамент заключается в таком рациональном подборе распределенных масс механизмов, который обеспечил бы полное или частичное погашение динамических давлений машины на фундамент. Для уравновешивания сил инерции механизма необходимо и достаточно так подобрать массы его звеньев, чтобы общий центр тяжести двигающейся системы оставался неподвижным. Для уравновешивания инерционных моментов необходимо так подобрать массы механизма, чтобы общий центробежный момент инерции масс всех звеньев механизма относительно осей хг, уг и ху был постоянным.  [c.199]

Задачи уравновешивания масс. Основной задачей уравновешивания масс является устранение добавочных динамических давлений на- опоры вращающихся звеньев механизма. Массы звеньев, силы инерции которых вызывают дополнительные давления на опоры, называются неуравновешенными массами.  [c.97]

При проектировании механизмов необходимо предусматривать возможность полного или частичного уравновешивания масс звеньев.  [c.98]

Наиболее наглядное и простое решение задачи статического уравновешивания масс плоских механизмов получается по методу заменяющих масс. В плоском движении системой заменяющих масс называется система сосредоточенных масс гп. ... т , которая об-  [c.133]

Эти динамические давления, будучи переменными по величине н знаку, производят сотрясения и вибрации машины и, таким образом, стремятся нарушить связь станины с фундаментом. Кроме того, динамические давления, возникающие при движении машины, увеличивают трение в точках опоры вращающихся валов, увеличивают износ подшипников, создают добавочные напряжения в отдельных частях машины, ведущие к усталости металла и его разрушению, и т. д. Поэтому в процессе проектирования машины ставится задача полного или частичного погашения динамических давлений. Эта задача называется задачей об уравновешивании движущихся масс механизмов машины, или задачей об уравновешивании сил инерции машины, так как влияние движения масс оценивается силами инерции.  [c.400]

Статическое уравновешивание масс плоских механизмов.  [c.330]

Одной из естественных тенденций в развитии машин явилась тенденция к повышению их рабочих скоростей, мощностей и передаваемых сил. До Великой Октябрьской социалистической революции вопросы динамики машин и механизмов были развиты сравнительно мало. В основном изучалась динамика паровых машин, некоторые вопросы динамики поршневых двигателей внутреннего сгорания и теория регулирования неравномерности движения этих машин. Динамика технологических машин начала разрабатываться только после революции. Первые исследования по динамике технологических машин были посвящены сельскохозяйственным машинам. В основу их были положены труды акад. В. П. Горячкина. До 30-х годов нашего столетия работы по динамике машин и механизмов продолжали носить прикладной характер. Рассматривались отдельные задачи динамики применительно к авиадвигателям, сельскохозяйственным, текстильным, пищевым, горным и другим машинам. В основном рассматривались задачи кинетостатики, уравновешивания масс, подбора маховых масс и некоторые вопросы крутильных колебаний валов двигателей внутреннего сгорания. В период с 1930 по 1940 г. на основе развития теории структуры механизмов появляются работы более общего плана, в которых излагаются методы кинетостатического исследования как плоских, так и пространственных механизмов. Начинают развиваться методы динамического исследования зубчатых, кулачковых и других видов механизмов.  [c.29]


Эффективность того или иного способа уравновешивания в определенной мере зависит от простоты конструкции и удобства установки корректирующих масс, а также от утяжеления механизма после присоединения к нему уравновешивающего устройства [1, 2]. В этой связи изыскание рациональных способов имеет весьма важное значение, особенно для пространственных механизмов, которые по структуре сложнее, чем плоские. На сегодняшний день наиболее глубоко разработаны теория и практика уравновешивания плоских механизмов [2, 3]. Заметим, что способы уравновешивания плоских механизмов приемлемы также и для уравновешивания пространственных механизмов. Однако при этом может идти речь только о частичном уравновешивании, так как. максимально могут быть уравновешены только две из трех составляющих главного вектора сил инерции механизма. Очевидно, в этом случае качество уравновешенности пространственного механизма будет сравнительно низким. Профессор М. В. Семенов предложил методику приближенного уравновешивания к-ш гармоники главного вектора сил инерции пространственного механизма посредством трех вращающихся векторов. Для реализации предложенного способа автор рекомендует использовать устройство, состоящее из трех одинаковых конических колес, на которых закреплены корректирующие массы и которые вращаются вокруг соответствующих координатных осей. Необходимо отметить, что при помощи указанного способа достигается весьма эффективное уравновешивание в тех случаях, когда проекции годографа главного вектора сил инерции на координатные плоскости являются круговыми или близкими к ним.  [c.50]

Рассматривается задача уравновешивания четырехзвенного механизма с не симметричными и консольными звеньями. При этом используется понятие точечных масс и главных точек звеньев.  [c.165]

РАЗДЕЛ ТРЕТИЙ СИЛОВОЙ РАСЧЕТ МЕХАНИЗМОВ. ВИБРАЦИЯ МАШИН И УРАВНОВЕШИВАНИЕ МАСС. НЕРАВНОМЕРНОСТЬ ХОДА МАШИН  [c.114]

Из уравнений (108) следует, что для уравновешивания сил инерции в плоском механизме достаточно так подобрать массы этого механизма, чтобы общий центр тяжести движущихся масс оставался неподвижным. Для уравновешивания моментов около осей х и у достаточно подобрать массы механизма так, чтобы центробежные моменты инерции этих масс относительно плоскостей xz и yz были постоянными.  [c.56]

Уравновешивание сил инерции. Для уравновешивания одних только сил инерции плоского механизма (без уравновешивания моментов от сил инерции) достаточно, чтобы общий центр тяжести S всех масс механизма оставался неподвижным, т. е. чтобы удовлетворялись условия  [c.60]

В настоящей статье приводится исследование движения центра масс подвижных звеньев центрального шатунно-кривошипного механизма, определяется годограф и центр неуравновешенных сил механизма и обосновывается новая схема приближенного уравновешивания в механизме одним противовесом суммарной силы инерции и первой гармоники суммарного инерционного момента.  [c.399]

Для уравновешивания силы требуется, чтобы центр масс механизма оставался неподвижным [1]. Как видно из рис. 2, это условие будет выдержано в том случае, если центр масс будет находиться в точке К-  [c.346]

Механизм уравновешивания кабины, облегчая ее опрокидывание вперед, обеспечивает почти полное уравновешивание массы кабины в любом ее по ю-жении. Механизм уравновешивания торсионного типа. Он состоит из двух взаимозаменяемых сплошных круглого сечения торсионов 9 с рычагами 5. Один конец торсиона сделан квадратным, а другой конец — имеет шлицы. Квадратный конец торсиона запрессован в нижний кронштейн 1 передней шарнирной опоры кабины, а шлицевой конец торсиона свободно установлен в резиновой втулке 10, находящейся во втором нижнем кронштейне передней опоры. Рычаг 5 нижним концом установлен на шлицах торсиона и жестко закреплен стяжным болтом И. Верхним концом рычаг 5 шарнирно соединен с опорой 6 торсиона, прикрепленной к поперечной балке 7 пола кабины.  [c.275]

Особо рассматриваются задачи о движении механизма, находящегося под действием приложенных к нему сил. В связи с новыми возникшими требованиями практики в настоящее время приходится вести динамический расчет механизма с учетом упругости ero звеньев. Такие задачи решаются при помощи уравнений Лaгpaнжa второго рода. К динамическим задачам, решаемым в курсе теории механизмов и машин, относятся также задачи о регулировании скорости движения механизма и некоторые задачи об уравновешивании масс механизмов.  [c.10]

При движении звеньев механизма в юшемэтических парах возникают дополнительные динамические нагрузки от сил инерции звеньев. Так как всякий механизм имеет неподвижное звено — стойку, то и стойка механизма также испытьшает вполне определенные динамические нагрузки. В свою очередь через стойку эти нагрузки передаются на фундамент механизма. Динамические нагрузки, возникаюш,ие при движении механизма, являются источниками дополнительных сил трения в кинематических парах, вибраций в звеньях и фундаменте и дополнительных напряжений в отдельных звеньях механизма. Поэтому при проектировании механизма часто ставится задача о рациональном подборе масс звеньев механизма, обеспечивающем полное или частичное погашение указанных динамических нагрузок. Эта задача носит название задачи об уравновешивании масс механизма. Так как при определении динамических нагрузок мы пользуемся по преимуществу приемами кинетостатики, то иногда эта задача носит также название уравновешивания сил инерции звеньев механизма.  [c.385]


Анализируя равенства (13.35), приходим к выводу, что для уравновешивания главного вектора сил инерции звеньев плоского мехагшзма необходимо и достаточно так подобрать массы этого механизма, чтобы общий центр масс всех звеньев механизма оставался неподвижным. Для уравновешивания главных моментов относительно осей хну необходимо и достаточно подобрать массы механизма так, чтобы центробежные моменты инерции масс всех звеньев механизма относительно плоскостей хг и yz были постоянными.  [c.279]

Объединим массы, размещенные на звеньях / и 3 т, = П1[л-h -f nil, -f riht, irii, == ni.u, + nu -f гп л (рис. 6.3, в, г). Таким образом, после размещения противовесов заданный механизм может быть заменен системой двух неподвиж 1ых масс т,] и Ши. Поэтому центр масс. Sv этой системы, а следовательно, и центр масс заданного механизма, но дополненного противовесами /Пк1 и niw. тоже станет неподвижным (рис. 6.3, г, d). А это означает, что статическое уравновешивание заданного механизма достигнуто. Массы и тк. противовесов надо определить из уравнений (6.5), задавшись размерами л,< и Гк).  [c.205]

Если звено механизма движется с переменной скоростью илн траектории его точек неирямолинейны, то из-за возникающих при этом ускорений появляются силы инерции звена, которые дополнительно нагружают связанные с ним звенья. Силы инерции вызывают динамические давле[1ия в кинематических парах, увел1[-чивают силы трения, вызывают дополнительные напряжения в материале звеньев, вибрации механизма и нарушения плавности движения. Массы звеньев, силы инерции которых вызывают дополнительные давления па опоры, называются неуравновешенными массами. Устранение нлп уменьшение дополннте.тьных нагрузок, вызываемых силами инерции, называется уравновешиванием масс.  [c.400]

В кинематических парах движущегося механизма силы инерции звеньев вызывают дополнительные динамические нагрузки. Возникают эти нагрузки и в кинематических парах, связывающих механизм со стойкой или фундаментом механизма. Уравновешивание динамических нагрузок на фундамент рассмотрим на примере плоского механизма. Если все силы инерции звеньев ирнве-сти к центру масс механизма, то в соответствии с формулой (7.3) получим главный вектор сил инерции F = —где те— масса механизма, а — вектор ускорения центра масс С, и вектор главного момента сил инерции Г,,. Условием уравновешенности механизма на фундаменте будет равенство нулю проекций этих векторов на оси координат Рц = 0 Л, = 0 7,, = 0 7 j,= = 0. Первые два условия говорят о том, что ас = О, или  [c.405]

Статическое уранновешивание масс плоских механизмов. При уравновешивании масс плоских механизмов часто ограничиваются выполнением условия (16.14), при котором равен нулю только глав-  [c.133]

Аналогично уравновешиванию четырёхшарнирных механизмов и для кривошипно-шатунного механизма можно подобрать массы звеньев и их центров тяжести так, чтобы главные векторы h образовали фигуру, подобную кривошипно-шатунному механизму. В отличие от ранее рассмотренных схем общий центр тяжести механизма будет в этом механизме не неподвижен, а будет двигаться по прямой, параллельной оси ползуна. Очевидно, что в этом случае в механизме останутся неуравновешенными силы  [c.61]

Пусть п = 3, тогда х = 3. Отсюда следует, что при статикодинамическом уравновешивании плоского механизма тремя массами-про тивовесами можно выбрать траектории центров всех трех противовесов.  [c.442]

Большинство машин изготовляют с нагружающим механизмом в виде неравноплечного рычага с соотношением плеч от 1 5 до 1 50, устанавливаемого на призмах или в шарикоподшипниках наверху или внизу станины (фиг. 217, б и 217, в). Предельная нагрузка у машин составляет от 3 до 5 тс (30—50 кн), так как при испытании нормальный образец, имеющий диаметр 10 мм, до разрушения не доводится. Все отечественные машины для испытания на ползучесть имеют рычажные нагружающие механизмы, которые состоят из рычага 1-го или 2-го рода с опорой на станине машины, подвески с грузами, шарнира для подвешивания рычага, противовеса для частичного уравновешивания массы самого рычага и пружинного устройства для плавного приложения нагрузки в начальный момент испытания.  [c.357]


Смотреть страницы где упоминается термин Уравновешивание масс механизма : [c.276]    [c.133]    [c.160]    [c.288]    [c.275]    [c.279]    [c.510]    [c.520]    [c.411]   
Теория машин и механизмов (1988) -- [ c.276 ]



ПОИСК



410 - Уравновешивание

644 - 646 - Расчет силовых и технологических параметров: механизмов привода рабочей клети обжатия 649 - 651 - Уравновешивание массы клет

Гельман, А. В. Синев, К- В. Фролов. О принципах уравновешивания и балансировки роторных механизмов с аксиально-движущимися массами

Динамика. Передача силы по шатуну. Раг.носие сил на рычаге Жуковского. Уравновешивание движущихся масс противовесами. Динамическое действие механизма на стойку. Движение центра тяжести

СИЛОВОЙ РАСЧЕТ МЕХАНИЗМОВ. ВИБРАЦИЯ МАШИН И УРАВНОВЕШИВАНИЕ МАСС. НЕРАВНОМЕРНОСТЬ ХОДА МАШИН Определение усилий в звеньях механизмов и реакций в кинематических парах

Уравновешивание масс

Уравновешивание масс звеньев механизма на фундаменте

Уравновешивание механизма

Уравновешивание механизмов методами подбора масс звеньев и подбора кинематической схемы механизма

Уравновешивание поступательно-движущихся масс кривошипно-ползунного механизма с помощью шестерен с противовесами



© 2025 Mash-xxl.info Реклама на сайте