Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жидкости Теплоотдача при течении в трубах

Участок стабилизованного теплообмена. Турбулентный режим. Теплоотдача при течении в трубах круглого сечения достаточно хорошо изучена экспериментально, так как этот процесс является наиболее характерным для многих теплообменных устройств. Исследования показали, что число Nu для вынужденной конвекции в трубах зависит от чисел Рейнольдса и Прандтля, от качества внутренней поверхности стенок (шероховатость), от изменения свойств переноса (X, ja, с) под влиянием температуры, от изменения плотности жидкости под влиянием температуры или давления.  [c.188]


В работе используются следующие основные термины и понятия, которые необходимо усвоить до выполнения работы средняя массовая температура местный и средний коэффициенты теплоотдачи массовый расход жидкости режимы движения жидкости в трубе начальные гидродинамический и термический участки, участки стабилизированного движения и теплообмена уравнение подобия для теплоотдачи при течении в трубе.  [c.166]

Теплоотдача при течении в трубе жидкости с внутренними источниками тепла изучалась в работах [Л. 50, 130, 136, 201, 202, 303, 310] и др.  [c.244]

В общем случае теплоотдача при кипении в трубе "определится системой критериев (17.30), дополненной числом Рейнольдса вынужденного течения жидкости  [c.355]

Как следует из изложенного, между процессом движения жидкости и процессом конвективного теплообмена существует тесная физическая связь — поле температуры в жидкости связано с полем скорости с одной стороны, а с другой определяет интенсивность теплоотдачи, отражаемую коэффициентом теплоотдачи а и являющуюся основным фактором, от которого зависит поверхность теплообмена и, следовательно, размеры тепло-об менных устройств. Из расчетных формул для теплоотдачи при течении жидкости вдоль плоской поверхности и при течении в трубе видно, что чем больше скорость потока, тем теплоотдача выше. Однако здесь есть и отрицательный эффект с увеличением скорости растет градиент скорости в поперечном направлении и связанная с этим сила вязкости трения. Возрастает, следовательно, и сила давления, которая должна преодолеть силу трения. Поэтому параллельно с расчетом теплоотдачи всегда ведут расчет падения давления в трубе — это необходимо для правильного проектирования теплообменных устройств.  [c.278]

Расчет теплоотдачи при турбулентном режиме течения в трубах н каналах несжимаемой жидкости с числами Рг>0,7 можно производит , по следующей формуле [13]  [c.84]

ОСОБЕННОСТИ ТЕПЛООТДАЧИ ПРИ ВЫНУЖДЕННОМ ТЕЧЕНИИ В ТРУБАХ ВЯЗКОПЛАСТИЧНЫХ ЖИДКОСТЕЙ  [c.304]

Теплоотдача. Выясним, можно ли применять гидродинамическую теорию теплообмена для исследования теплоотдачи при турбулентном течении в трубе. Для этого исследуем теплоотдачу в трубе при турбулентном течении жидкости с помощью уравнений для турбулентного пограничного слоя. При стабилизованном тече-  [c.147]

Коэффициент теплоотдачи а к газожидкостному потоку может в несколько раз превышать коэффициент теплоотдачи при течении однородной капельной жидкости. На рис. 27.11 представлены кривые изменения локального числа Нуссельта при восходящем течении в трубе воды с пузырями воздуха в зависимости от рас-  [c.327]


Процесс теплоотдачи при течении жидкости в трубах является более сложным по сравнению с процессом теплоотдачи при смывании поверхности неограниченным потоком. Жидкость, текущая вдали от пластины, не испытывает влияния процессов, происходящих у стенки. Поперечное сечение трубы имеет конечные размеры. В результате, начиная с некоторого расстояния от входа, жидкость по всему поперечному сечению трубы испытывает тормозящее действие сил вязкости, происходит изменение температуры жидкости как по сечению, так и по длине канала. Все это сказывается на теплоотдаче.  [c.200]

ТЕПЛООТДАЧА ПРИ ТЕЧЕНИИ ЖИДКОСТИ В ГЛАДКИХ ТРУБАХ КРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ  [c.210]

ТЕПЛООТДАЧА ПРИ ТЕЧЕНИИ ЖИДКОСТИ В ТРУБАХ НЕКРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ, В ИЗОГНУТЫХ И ШЕРОХОВАТЫХ ТРУБАХ  [c.217]

ТЕПЛООТДАЧА ПРИ ТЕЧЕНИИ ЖИДКОСТИ В ТРУБАХ  [c.73]

Теплоотдача при течении жидкости в трубах........78  [c.342]

Задача о влиянии внутреннего источника тепла на коэффициент теплоотдачи при течении жидкости в трубе была рассмотрена в работах [50, 64 111].  [c.161]

Таким образом, получены экспериментально обоснованные обобщающие зависимости для расчета нестационарного коэффициента теплоотдачи при течении газов и жидкостей в трубах для большинства практически встречающихся типов нестационарных воздействий в широком диапазоне изменения параметров. Данные зависимости, в частности, позволяют при заданной точности расчетов определить границы применимости квазистационарной методики расчета нестационарных тепловых процессов.  [c.219]

Рассмотренные в этом параграфе формулы применимы для расчетов теплоотдачи при турбулентном течении в трубах газов, воды, масел и других жидкостей. Исключение составляют среды с числом Рг- 1, т. е. расплавленные металлы.  [c.192]

Внутренний источник тепла возникает в потоке жидкости, несущей радиоактивную взвесь, в потоке радиоактивного раствора, при прохождении электрического тока через электролит или жидкий металл и т. п. Рассмотрим влияние этого фактора на коэффициент теплоотдачи при течении жидкости в круглой трубе, достаточно длинной для того, чтобы можно было пренебречь влиянием входного участка.  [c.213]

ТЕПЛООТДАЧА ПРИ ТЕЧЕНИИ НЕСЖИМАЕМОЙ ЖИДКОСТИ В ТРУБАХ 1. Распределение скоростей и гидродинамическое сопротивление при изотермическом течении  [c.233]

Теплоотдача при течении в трубах и каналах. При ламинарном течении жидкости (газа) в прямых круглых трубах и к а н а-.4 ах постоянного сечения различают вязкостный режим течения, отвечающий значениям Qr-Рг < 5-105, ц вяз-костно-граашпациоиный режим течения, отвечающий значениям Ог-Рг >  [c.143]

Описанная методика может быть использована как при внешнем обтекании поверхности (пограничный слой), так и при течении в трубах. Рис. 8.5 относится к течению в пограничном слое, а на рис. 8.6 приводятся опытные данные работы [60] для случая кипения хладона R113 ( j F3 L3) в кольцевом канале. Из этого рисунка видно, что при развитом пузырьковом кипении на теплообмен не влияет и недогрев жидкости до температуры насыщения. Коэффициенты теплоотдачи а и здесь отнесены к температуре насыщения. В области заметного влияния однофазной конвекции при расчетах необходимо учитывать, что относится к среднемассовой температуре жидкости Т. Этот учет достигается введением очевидной коррекции в формулу (8.19)  [c.357]

В заключение отметим, что в предыдущих параграфах настоящей главы рассмотрены наиболее простые случаи теплоотдачи при обтекании пластины и при течении в трубе без учета а) сжимаемости (р = onst) б) зависимости физических свойств жидкости от температуры в) влияния числа Прандтля (Рг=1, РГтб==1) г) влияния формы тела и качества (шероховатость) обмываемой поверхности.  [c.148]

Попов В. Н. Теоретический расчет теплоотдачи н сопротивления. трения при течении в трубах несжимаемой жидкости с переменными физическими свойствами. Автореф. дисс. на соискание учен, степени канд. техн. наук, МЭИ. М., 1964.  [c.275]


Высокая объемная удельная теплоемкость твердых частиц, или капель жидкости в составе многофазных систем по сравнению с газом, а также потребность в высоких коэффициентах теплоотдачи в газоохлаждаемых реакторах определили интерес к теплообмену смесей газ — твердые частицы при течении их по трубам. Теоретический анализ теплообмена таких смесей при турбулентном течении в трубах принадлежит Тьену [808, 809]. Он основан на результатах экспериментальных исследований систем газ — твердые частицы [212, 687], жидкие капли — газ [393] и жидкость — твердые частицы [676]. Анализ Тьена правомерен для следующей упрощенной модели  [c.169]

Перейдем к рассмотрению теплоотдачи при турбулентном движении жидкости в трубе. Развитый турбулентный режим течения в трубе осуществляется при Re lOOOO. В диапазоне 2300Re1 O в трубе наблюдается переходный режим течения — неустойчивый режим, характеризующийся сменой ламинарного и турбулентного потока. Такое состояние характеризуется так называемым коэффициентом перемежаемости, O io l, представляющим собой относительное время существования турбулентного потока величина 1—со приходится на долю ламинарного потока. Надежные рекомендации по расчету теплоотдачи при переходном режиме пока не разработаны. Поэтому возможны лишь оценки по минимальному и максимальному коэффициентам теплоотдачи для ламинарного и турбулентного режимов соответственно с учетом коэффициента перемежаемости.  [c.386]

В заданных конкретных условиях для каждой жидкости существует предельное значение критерия Kw, выше которого влияние механизма турбулентного обмена в однофазной среде становится пренебрежимо малым. Однако в общем случае эта граница не может быть точно определена только с помощью критерия Kw [182]. Дело в том, что при кипении жидкости с заданными физическими свойствами количество теплоты, вынесенное из пристенной области за счет процесса парообразования, пропорционально ql rp"), а интенсивность турбулентного обмена в однофазной среде определяется значением числа Рейнольдса Re = twi/v, а не одной только скоростью W [182]. Например, при фиксированных значениях плотности теплового потока я скорости циркуляции интенсивность переноса теплоты при турбулентном течении однофазной среды с увеличением диаметра трубы уменьшается. Следовательно, этот механизм переноса перестает влиять на теплоотдачу к кипящей жидкости в трубе большего диаметра при меньшем значении q и, следовательно, Кш- При механизмов переноса теплоты с увеличением вязкости жидкости также смещается в сторону меньших значений критерия К -При кипении в трубах коэффициент теплоотдачи зависит также от иаросодержания потока. Эта зависимость обусловлена возрастанием истинной скорости жидкой фазы w и изменением структуры потока по мере накопления в нем пара при неизменном массовом расходе парожидкостной смеси.  [c.228]

Наиболее сложные законы тепло- и массообмена наблюдаются при дисперсно-кольцевой структуре двухфазного потока. В этом случае коэффициент теплоотдачи определяется действительной скоростью жидкости, текущей в пленке, и характером волнообразования на ее поверхности. Следовательно, знание параметров пленки является необходимым условием для создания обоснованных методов расчета интенсивности теплообмена в условиях дисперснокольцевого режима течения парожидкостной смеси. Эти знания являются также ключом к пониманию физического механизма возникновения кризисов теплообмена при кипении в трубах и позволяют получить рациональные формулы для расчета плотностей критических тепловых потоков или граничных паросодержаний, превышение которых ведет к резкому ухудшению теплоотдачи.  [c.231]

Исследования в области теплообмена в потоке химически реагирующих газовых смесей проводились в ИВТ АН СССР [3.36—3.38]. Б. С. Петухов и В. Н. Попов [3.36, 3.37] использовали разработанный ими метод расчета теплообмена и сопротивления трения вдали от входа в трубу при переменных физических свойствах жидкости в случае течения равновесно диссоциирующих сред. В [3.36] приведен расчет теплообмена и сопротивления трения при турбулентном течении в трубе равновесно диссоциирующего водорода. На основе расчетных данных по теплоотдаче получено критериальное уравнение, обобщающее эти данные с точностью 5%  [c.95]

П. Л. Кириллов, В. И. Субботин, М.. А. Суворов, М. Ф. Троянов [88] изучали теплоотдачу к гидродинамически стабилизированному потоку эвтектического сплава натрия с калием при течении в медных и никелевых трубах = 22ч-40 дгдг,- = 28ч-40Были определены средние по длине коэффициенты теплоотдачи по измерению те.мператур стенки трубы и средних температур жидкости на входе и выходе из трубы. В опытах  [c.139]

Значения чисда Миг, рассчитанные по формуле (4.83), меньше, чем по зависимости (4.67), полученной для пучков с числом труб Ш> 31 (см. рис. 4.13). Такое отличие можно объяснить влиянием периферийного ряда труб при различных методах эксперимента и обработки опытных данных. Известно, что условие теплоотдачи на периферийном ряду труб или стержней [57] аналогичны условиям теплоотдачи при течении жидкости в кольцевом канале с нагревом только одной стенки, когда коэффициент теплоотдачи снижается. По-видимому, этот эффект наблюдается и в пучках с 19 витыми трубами при  [c.124]

Точка Е на фиг. 14 является границей между кольцевым режимом и течением в виде тумана. При переходе этой границы происходит еще одно изменение процесса теплообмена. Для этого режима течения уравнение (16) неприменимо. При течении в виде тумана толщина пленки жидкости уменьшается настолько значительно, что слой перегретой жидкости может подвергаться непосредственному воздействию основного потока пара. В этих условиях тепло передается путем непосредственного обмена жидкими каплями между паровым ядром потока и перегретой лшдкостью в слое, омывающем внутреннюю поверхность стенки трубы. Температура капли, срывающейся с поверхности перегретого слоя, уменьшается за счет испарения, а после выпадения ее в пленку жидкости возникает дополнительный поток тепла. Если эта гипотеза справедлива, то количество тепла, переданное от степкп к потоку, будет пропорционально интенсивности обмена каплями жидкости. В этом случае тепловой поток должен определяться только гидродинамическими характеристиками течения смеси. Другими словами, статистическое поведение капель, средняя длина пути смешения, амплитуда пульсаций и т. д. могут определять поведение системы и являться основой решения задачи. При этом коэффициент теплоотдачи определяется числом Рейнольдса, выраженным через соответствующим образом подобранные параметры. Могут возникнуть условия, при которых система неспособна обеспечить подвод новых порций жидкости к слою жидкости, покрывающему обогреваемую стенку трубы, и в каком-либо месте на стенке образуется сухое пятно. Это приводит к быстрому повышению температуры стенки, что часто наблюдалось при проведении экспериментов.  [c.269]


Проблема теплоотдачи при течении жидкости в трубах была предметом исследования в течение многих лет. Если в трубе имеет место полностью развитое ламинарное течение, то распределение осевой скорости описывается уравнением Пуассона. Решение этого уравнения может быть получено различными математическими методами, в том числе вариационным методом. Если, помимо этого, распределение температуры также является полностью стабилизированным, то уравнение энергии без учета вязкой диссипации также сводится к уравнению Пуассона. Когда распределение температуры не является полностью стабилизированным, определение температурного поля представляет нелегкую задачу. Трудности обусловлены тем, что уравнение энергии содержит распределение скорости как в конвективном, так в диссипативном членах. Даже в случае такой простой геометрии, как круглая труба, когда распределение скорости дается параболическим законом, задача о теплообмене рассмотрена Грэтцем и сотр. [1, 2] лишь без 5 чета второй производной от температуры по аксиальной координате и членов, соответствуюш их вязкой диссипации. Решение выражалось в виде рядов по ортогональным функциям, которые не были полностью табулированы или изучены.  [c.325]

Данные о теплоотдаче при кипении ие-догреТой жидкости в условиях вынужденного течения в трубах см. также [29, 32,49].  [c.183]


Смотреть страницы где упоминается термин Жидкости Теплоотдача при течении в трубах : [c.153]   
Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.0 ]

Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.0 ]



ПОИСК



Вариационный метод расчета теплоотдачи при вынужденном течении жидкости в трубах произвольного поперечного сечения. Перевод Готовского

Глава одиннадцатая. Теплоотдача при течении несжимаемой жидкости в трубах

Жидкости Течение турбулентное в круглых трубах — Теплоотдача — Расчетные формулы

Основные результаты экспериментальных исследований теплоотдачи в трубах и каналах при турбулентном течении жидкостей

Основы теории теплоотдачи в трубах и каналах при турбулентном течении жидкостей

Особенности теплоотдачи при вынужденном течении в трубах вязкопластичных жидкостей

Теплоотдача

Теплоотдача в трубах и каналах при установившемся течении несжимаемой жидкости

Теплоотдача при вынужденном течении жидкости в труОсобенности движения и теплообмена в трубах

Теплоотдача при вынужденном течении жидкости в трубах

Теплоотдача при вынужденном течении жидкости в трубах и каналах

Теплоотдача при течении в трубах

Теплоотдача при течении жидкости (газа) в трубах

Теплоотдача при течении жидкости в гладких трубах круглого поперечj ного сечения

Теплоотдача при течении жидкости в гладких трубах круглого поперечного сечения

Теплоотдача при течении жидкости в трубах некруглого поперечного - сечения, в изогнутых и шероховатых трубах

Теплоотдача при течении жидкости в трубах некруглого поперечного сеI чения и в изогнутых и шероховатых трубах

Теплоотдача при течении несжимаемой жидкости в трубах

Течение в жидкости

Течение в трубах

Течение жидкости в трубах



© 2025 Mash-xxl.info Реклама на сайте