Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Внешние потери турбины

Все потери энергии паровой турбины можно разделить на две группы внутренние и внешние. Внутренние потери возникают внутри корпуса турбины и приводят к уменьшению используемого теплоперепада h . Они представляют собой потерю энергии пара на трение, вихри, удар и пр. Потерянная энергия превращается в теплоту, повышая конечную энтальпию пара. К внешним потерям турбины относятся потери от утечки пара через концевые уплотнения и механические потери.  [c.199]


Внешние потери турбины  [c.202]

К внешним потерям турбины относятся механические потери и потери от утечки пара через концевые уплотнения.  [c.251]

Кроме перечисленных внутренних, существуют внешние потери, которые увеличивают расход рабочего тела на единицу работы их относят ко всей турбине в целом.  [c.337]

Внешние потери. Внешними называют потери, не изменяющие количество или состояние рабочего тела в проточной части турбины. К ним относятся потери на вращение неработающих ступеней турбины заднего хода (ТЗХ) на переднем ходу, потери трения в подшипниках турбин, потери в передаче.  [c.148]

Внешние потери энергии образуют группу потерь, которые непосредственно не могут оказывать влияния на состояние пара в турбине. К ним относятся механические потери вследствие трения в подшипниках и затраты энергии на привод регулятора, масляного насоса и других вспомогательных механизмов, а также энергия, теряемая в зубчатом редукторе, если последний предусмотрен для передачи работы от вала турбины. Сюда же относится энергия, теряемая вследствие утечки пара в окружающую среду через внешние уплотнения вала.  [c.138]

Если внешним потерям соответствует мощность N 1, то эффективная мощность, передаваемая через муфту турбины,  [c.142]

В тепловых расчетах внутренняя валовая мощность получается без учета потерь механической энергии вне корпусов турбин. От этой мощности надо перейти к указанной здесь эффективной мощности путем учета внешних потерь.  [c.29]

Уо расхода пара на теплофикационные турбины. Паровой баланс на ТЭЦ с внешними потерями  [c.87]

Взрывоопасная концентрация газа в воздухе 247 Внешние потери нара и конденсата 86, 87 Внутренние потери нара и конденсата 80, 81, 87 Внутренний относительный КПД турбины 17, 37 Внутренняя мощность газовой турбины 297  [c.321]

Внешние потери имеют место прг отпуске пара непосредственно из турбин и парогенераторов, когда часть конденсата этого пара не возвращается на ТЭЦ.  [c.66]

На ТЭЦ без внешних потерь конденсата устанавливают одно- и двухступенчатые испарительные установки. При значительных внешних потерях конденсата применяют многоступенчатые испарительные установки с числом рабочих ступеней от трех до шести, включаемых по схеме замкнутого типа (рис. 4-15). В такой испарительной установке применяется последовательное питание испарителей водой, начиная со ступени повышенного давления вторичный пар из испарителей конденсируется внутри установки в подогревателях питательной воды испарителей. Для замкнутой работы испарительной установки требуется до шести ступеней испарителей при питании их водой при температуре 20° С. При меньшем числе ступеней или при питании испарителей подогретой водой не удается сконденсировать весь вторичный пар и часть его приходится конденсировать в регенеративных подогревателях турбин.  [c.74]


Чем определяются внутренние и внешние потери энергии в турбине  [c.215]

Потери в турбине подразделяются на внутренние и внешние. К внутренним потерям относятся потери на венце, потери на трение пара о вращающиеся диски и барабан, потери на перетечку пара через уплотнения между ступенями и т. д. Суммарные внутренние потери турбины равны разности между располагаемым теплоперепадом и действительным теплоперепадом  [c.230]

В зависимости от того, какие потребители подключены к ТЭЦ и каковы их относительные потребности в паре, невозврат конденсата производственных потребителей на разных ТЭЦ различен. Он колеб-ляется от 40 до 100 %, если рассчитывать по отношению к количеству отпущенного пара, и от 10 до 40 %, если рассчитывать по отношению к количеству пара, поступающего в турбину. Для ТЭЦ невозврат конденсата от внешних потребителей пара является внешними потерями. Они, так же как и внутристанционные потери, должны восполняться добавочной водой. Общий добавок в основной цикл ТЭЦ определяется суммой внешних и внутристанционных потерь.  [c.9]

Добавочная вода, вводимая в питательную систему котлов при открытой схеме отпуска тепла, должна восполнить внутренние и внешние потери пара и конденсата. При открытой схеме отпуска пара более целесообразна установка барабанных котлов, позволяющих осуществить усиленную продувку и получить более чистый пар. От качества добавочной воды существенно зависит надежность работы котлов и чистота пара, вырабатываемого ими, а следовательно, и надежность работы турбин.  [c.92]

Параметры, характеризующие работу ГТУ. Потери в ГТУ подразделяются на внутренние, влияющие непосредственно на изменение состояния рабочего тела, и внешние. К основным внутренним потерям относятся потери теплоты в газовой турбине, компрессоре и камере сгорания.  [c.154]

Вторая группа потерь не является характерной для лопастной системы и должна быть учтена при построении внешней характеристики. С учетом этих потерь крутящие моменты на насосе и на турбине будут равны  [c.302]

Турбореактивный двигатель (рис. 6.2) устанавливают на самолетах с околозвуковыми скоростями полета (при высокой начальной температуре газа перед турбиной скорость полета может увеличиваться до М > 2). Параметры рабочего тела (воздуха и продуктов сгорания топлива в воздухе) - давление р, температура Т и скорость w — вдоль газовоздушного тракта ТРД изменяются так, как показано в нижней части рис. 6.2. На взлете воздух из внешней среды засасывается через воздухозаборник I. Вследствие потерь в нем давление перед компрессором 2 становится несколько ниже давления внешней среды. В полете с большими скоростями воздух подвергается динамическому сжатию в свободной струе и сверхзвуковом диффузоре, затем сжимается в компрессоре, скорость его несколько уменьшается, а температура возрастает. За камерой сгорания 3 при определенном коэффициенте избытка воздуха температура Т продуктов сгорания меньше температуры пламени Тпл и имеет значение, при котором обеспечивается надежная работа турбины ГТД. Давление р продуктов сгорания в камере несколько падает, скорость  [c.256]

В этом цикле нет потерь на трение, нет потерь тепла в котле, турбине и трубопроводах, все процессы протекают обратимо, в частности процесс расширения пара в турбине происходит без теплообмена с внешней средой (т. е. адиабатно). На диаграмме v — р этот цикл представлен на рис. 10-16,  [c.117]

Потери внутренние и внешние. Внутренние потери кинетической энергии вновь превращаются в тепло в проточной части турбины, влияя таким образом на состояние рабочего тела. К этой группе относятся потери, вызываемые трением и вихреобразованием на лопатках, утечками через зазоры внутри машины, трением дисков или барабана о пар, а также потери кинетической энергии, уносимой потоком после рабочего колеса и далее не используемой. Все перечисленные потери можно нанести на энтропийной диаграмме и таким образом учесть их влияние на расчётные параметры пара.  [c.138]


Разумеется, мы ни в какой степени не являемся принципиальными противниками этого метода, наглядность и простота которого делают его вполне приемлемым всюду, где не требуется особой точности расчетов. Однако несравненно лучшим методом уточнения тепловых расчетов турбин и компрессоров является метод дифференцированного изучения имеющихся в потоке потерь энергии, которые происходят или в результате внутренних явлений в самом потоке, вызываемых внешними воздействиями на него, или из-за изменяемости параметров потока, вызванных непосредственными внешними воздействиями (например, несоответствием конструкции проточной части закономерностям движения расширяющегося потока).  [c.25]

В установке с турбиной П осуществляется комбинированная выработка двух видов энергии — электрической и тепловой. Цикл служит, как всегда, для производства механической (электрической) энергии, причем холодным источником является внешний тепловой потребитель (фиг. 24). Тепло, сообщенное пару в котле, в идеальной установке с турбиной П используется полностью, потеря тепла во внешнюю среду отсутствует. Турбины П могут рассматриваться как частный (предельный) случай турбин более общего типа КО—с отбором и конденсацией пара поэтому показатели турбин П будут даны ниже на основе рассмотрения показателей турбин КО.  [c.38]

Если обозначим к. п. д. установки по отпуску тепла к. п. д. трубопроводов и к. п. д. котельной установки и пренебрежем потерями от рассеяния тепла корпусом турбины, то частный к. п. д. ТЭЦ по производству тепловой энергии, отпускаемой внешнему потребителю, по принятому условному физическому" методу выразится так  [c.47]

Пар внешнему потребителю отпускается из отбора турбины, а также из котельной через редукционно-охладительную установку редуцированный пар охлаждается водой, отводимой из напорной линии питательных насосов. Конденсат пара, отпускаемого внешнему потребителю, частично теряется, частично возвращается на ТЭЦ в виде обратного конденсата. Внутренние потери пара и конденсата на схеме условно сосредоточены в линии свежего пара между котлом и турбиной. Для использования продувочной воды котлов применены расширитель (сепаратор) и теплообменник для подогрева добавочной воды.  [c.135]

На ТЭЦ регенеративные отборы осуш,ест-вляют подогрев не только конденсата турбин, но и обратного конденсата от внешних потребителей теплоты и добавочной воды, компенсирующей в основном внешние потери пара и конденсата у потребителя. Обратный конденсат от потребителей имеет, как правило, более высокую температуру, чем основной конденсат. Доля его, в общем потоке питательной воды довольно значительна, поэтому сумма регенеративных отборов на ТЭЦ и абсолютная экономия теплоты от регенерации менее значительна, чем на конденсациопных электростанциях с теми же начальными параметрами пара и расходом пара и питательной воды.  [c.66]

Надежный водный режим паровых котлов промышленной ТЭС можно обеспечить, если включить испарители по схеме паропреобра-зователей, т. е. отпускать внешнему потребителю вторичный пар испарителей. При этом конденсат греющего пара из отбора турбины сохраняется на ТЭЦ и является основной составной частью питательной воды паровых котлов (рис. 6.6). Внешние потери пара из отбора турбины и конденсата при этом отсутствуют, потери пара и конденсата на ТЭЦ сводятся к внутренним потерям.  [c.88]

В пароводяной тракт паротурбиппой электростанции непрерывно поступают примеси с паром, вырабатываемым котлами с присосами охлаждающей воды через неплотности в конденсаторах паровых турбин с нрисосами сетевой воды через неплотности в теплофикационных подогревателях с забросом концентрата во вторичный пар испарителей или низкокачественным дистиллятом с обратными загрязненными конденсатами внешних потребителей отборного пара теплофикационных турбин ТЭЦ с добавочной питательной водой, восполняющей внутристанционные и внешние потери пара и конденсата. Кроме того, в пределах самого пароводяного тракта электростанции могут образоваться окислы железа, меди и других металлов.  [c.14]

На промышленных ТЭЦ, отпускающих отработавший пар из отборов турбин внешним потребителям на различные производственные нужды, наряду с внутристанцион-ными потерями пара и конденсата имеют место внешние потери, величина которых зависит от специфических особенностей технологии производства и конструкции заводских аппаратов, потребляющих пар.  [c.12]

На теплофикационных электростанциях, помимо вну-тристанционных потерь, имеются внешние потери пара и конденсата на отопительные и производственные цели. В последнем случае эти потери могут достигать40—60% от общего расхода пара. На теплофикационных электростанциях движение воды и пара осуществляется по двум замкнутым контурам (рис. 0-3,6) один — через конденсатор турбины (см. выше), а второй — через производственные агрегаты, использующие тепло отборного пара турбиньи.  [c.19]

К внутренним относятся потери в клапанах св ежего пара, перепускных клапанах, в соплах, на ]забочих лопатках, с выходной скоростью, на трение диска в паре и др. К внешним потерям относятся механические потер1И от преодоления трения в опорных и упорных подшипниках, а также потери от утечки пара через концевые лабиринтовые уплотнения. Потери тепла в паровой турбине учитываются ее коэффициентом полезного действия. Различают следующие коэффициенты полезного действия турбоагрегата.  [c.126]

Вследствие разности между давлениями в корпусе турбины и атмосферой через концевые лабиринтовые уплотнения будет протекать некоторое количество пара. Утечки пара через концевые уплотнеппя не оказывают влияния на изменение состояния пара в турбине, поэтому и относятся к внешним потерям.  [c.43]


Кроме внутренних, в турбине есть внешние потери, увеличиваюшие расход пара на единицу работы.  [c.447]

КЭС — конденсационная электрическая станция, на ней установлены турбоагрегаты конденсационного типа. Для внешнего потребителя такая станция производит только электрическую энергию. Крупные КЭС, снабжающие электроэнергией целый промышленный район и являющиеся самостоятельными предприятиями, называются ГРЭС — государственные районные электростанции. Они связаны с потребителями электроэнергии только линиями электропередачи и обычно размещаются вдали от предприятий и городов, что позволяет избежать дополнительного загрязнения природной среды в зоне городов выбросами ГРЭС. ТЭЦ — теплоэлектроцентраль. ТЭЦ связана с предприятием и жилым массивом трубопроводами для подачи пара и горячей воды. Во избежание больших тепло-потерь, что может иметь sie TO для чрезмерно длинных паропроводов и теплотрасс, ТЭЦ расположена обычно в пределах города, на территории предприятия или вблизи них. На ТЭЦ устанавливаются турбины с отборами пара для нужд производства и отопления либо турбины с противодавлением.  [c.218]

К потоку могут быть приложены различные внешние силы, имеющие некоторые перемещения такие силы будут совершать работу и изменять величину механической энергии, несомой жидкостью. Например, поток воды может приводить в действие гидравлическую турбину, причем полная механическая энергия потока за счет работы лопастей турбины будет уменьшаться стенки металлического напорного трубопровода могут вибрировать, причем эта вибрация будет поглощать энергию, несомую жидкостью, и т.п. Мы далее не будем касаться таких случаев. Далее будем иметь в виду потерю механиче-д ской энергии потоком, находящимся в неподвижном русле, обу----  [c.129]

При отсутствии потерь во внешнюю среду теплота, отданная газом, и теплота, воспринятая воздухом, будут одинаковыми, т. е. площадь АаЬб == плош ади 2 db. Естественно, температура подогретого воздуха Гд не может превысить температуру газа за турбиной Т4, а температура газа на выходе из регенератора не может быть ниже температуры воздуха за компрессором Га-  [c.188]

Если при данной температуре внешнее давление уменьшается до давления паров морской воды, то начинается вскипание. На практике часто наблюдается локальное закипание воды при очень большой скорости потока. Например, морская вода, обтекающая с высокой скоростью турбину или гребной винт, испытывает очень резкие перепады давления при резком изменении сечения потока, в частности на краю лопастей. При этом образуются пузырыш пара, которые в другой точке потока могут испытать коллапс. Повторяющиеся удары, возникающие при коллапсе этих пузырьков, со временем приводят к разрушению поверхности металла. Отрывающиеся чешуйки металла открывают свежую активную поверхность для коррозионного воздействия морской воды. Таким образом, кавитация в морской воде сопровождается потерями металла как за счет механического разрушения, так и за счет коррозии.  [c.28]

В турбине ГТ-25-700 газовпускной патрубок выполнен сварным из листового проката. Направляющий аппарат первых трех ступеней — сварной из аустенитной стали, направляющий аппарат последующих ступеней — также сварной, но из нержавеющей стали. Цилиндр в зоне газовпуска — двойной. Внешний цилиндр остается холодным (не более 350—400°), так как он защищен от нагрева экраном. Между экраном и внешним цилиндром, с целью охлаждения последнего, продувается некоторое количество воздуха. Воздух подмешивается в проточную часть после первой ступени с целью уменьшения потерь, связанных с охлаждением. Ротор турбины выполнен 16  [c.16]

Для турбины П к. п. д. Yjjya И не зависят от значений параметров рабочего процесса, так как характеризуют физический эквивалент производимой механической и затрачиваемой тепловой энергии при отсутствии потерь во внешнюю среду и условном исключении из полного действительного расхода тепла величины расхода тепла на внешнее потребление.  [c.45]

Частный к. п. д. комбинированной установки по производству тепловой энергии, отпускаемой внешнему потребителю, характеризует общую тепловую экономичность процессов производства, транспорта и отпуска тепла теплоносителя в пределах ТЭЦ и учитывает потери тепла в котельной, рассеяние тепла в трубопроводах, паровой турбине и в теплоподготовительной установке для отпуска тепла внешнему потребителю (коллекторная установка теплопроводов, выводимых с ТЭЦ бойлерная, паропреобразовательная установки).  [c.47]

До сих пор были рассмотрены тепловые схемы с отпуском пара внешним потребителям непосредственно из отбора турбины. Задача водоприготовления при этом заключалась в подготовке добавочной воды для питания котлов необходимого качества и в количестве, полностью покрывающем потери конденсата внутри станции и у потребителя.  [c.163]

Возможно, однако, создать такую схему отпуска пара со станции, которая позволяет обеспечить питание котлов высококачественной водой при любых потерях конденсата внешним потребителем. Это достигается отпуском пара внешнему потребителю не непосредственно из отбора турбины, а из испарителя, включенного в качестве паропреобра-зователя (фиг. 123). Пар из отбора турбины поступает в испаритель, служащий паропре-образователем, в котором отдает тепло, выделяемое при конденсации, испаряемой воде. Внешнему потребителю отдают вторичный пар из паропреобразователя, полученный в результате испарения сырой химически очищенной воды или обратного конденсата, не пригодного для питания котлов. Таким образом, конденсат отбираемого пара турбины сохраняется в первичном контуре паропреобразователя на станции и возвращается в котел. Внешний потребитель получает пар из вторичного контура паропреобразовательной установки. Схема может быть применена при потерях конденсата у внешнего потребителя, до 100%, и в этом смысле является универсальной.  [c.163]


Смотреть страницы где упоминается термин Внешние потери турбины : [c.210]    [c.69]    [c.359]    [c.121]    [c.280]    [c.92]    [c.102]    [c.112]   
Смотреть главы в:

Основы энергетики  -> Внешние потери турбины



ПОИСК



Внешние потери

Потери в турбине



© 2025 Mash-xxl.info Реклама на сайте