Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость вакуум

Приемный преобразователь и охватывающее его в виде обратной связи корректирующее звено образуют следящую систему. Такая система обеспечивает стабилизацию состояния теплового элемента при изменении контролируемой величины. Системы уравновешивания находят применение при измерении температуры, скорости, вакуума, угла поворота и т. д.  [c.204]

Тепловое излучение как процесс распространения электромагнитных волн характеризуется длиной волны X и частотой колебаний v = /X, где с — скорость света (в вакууме с = 3-10 м/с).  [c.90]


Это соотношение показывает, что абсолютную температуру можно интерпретировать как статистическое свойство, определяемое поведением большого числа молекул. Сама по себе концепция температуры теряет свое значение, когда число молекул мало. Например, вполне разумно измерять температуру газа в объеме 1 фут (28,3 л) при обычном давлении, когда число молекул в этом объеме порядка 10 или больше. Однако если в сосуде создать вакуум до такой степени, чтобы в нем было только 10 молекул, то понятие температура газа потеряет смысл, поскольку число молекул недостаточно для обеспечения статистическою распределения энергии. Любой прибор, измеряющий температуру, введенный в сосуд, покажет температуру, определяемую скоростями энергетического обмена (главным образом путем радиации) между измеряемым прибором и стенками сосуда. Однако указанную этим прибором температуру нельзя рассматривать как температуру 10 молекул газа в сосуде. Во всех последующих уравнениях термодинамические свойства будут выражены в значениях абсолютной температуры Т вместо л.  [c.107]

Таким образом, коэффициент торможения падения частиц во встречном потоке зависит от числа тормозящих элементов п, отношения скорости витания и скорости падения в вакууме, коэффициента аэродинамического торможения К и ряда факторов, суммарно учитываемых эмпирическим коэффициентом с. Согласно (3-20) и (3-24) определим, что  [c.92]

Чтобы удалить большинство растворенных в вольфраме газов, необходимо нагреть его в вакууме до температуры около 2200 °С и откачивать в течение примерно двух часов (здесь и в -последующем при обсуждении изменений в вольфраме приводится истинная температура, а не спектральная яркостная температура). После такой обработки основная часть оставшегося в стеклянной оболочке лампы газа будет появляться из молибденовых или никелевых вводов, которые остаются при более низкой температуре, или из стекла. Нагретый вольфрам выделяет следующие газы (в порядке их концентрации) азот, окись углерода и водород. Присутствие их в твердом растворе всегда увеличивает электрическое сопротивление металла. Если после отпайки лампы имеет место чрезмерная дегазация вольфрама, обычно наблюдается гистерезис соотношения со-противление/температура. Этот гистерезис происходит следующим образом. При высоких температурах газ выделяется из глубины металла диффузией к поверхности и испарением. При охлаждении тот же газ, если он не был удален откачкой или абсорбирован в другом месте, конденсируется на поверхности вольфрама и начинает диффундировать обратно в металл, увеличивая тем самым его сопротивление. Скорость, с которой происходят все эти процессы, является экспоненциальной функцией температуры. Для ламп, используемых в области до 1800 °С, дрейф сопротивления при охлаждении, скажем до 1200 °С, может происходить в пределах нескольких дней как результат недостаточной дегазации в начальной стадии или последующей течи.  [c.353]


При возрастании угловой скорости сосуда давление /7 , оставаясь постоянным в точках г = У 2 (Ли = Р ) уменьшается в центральной части крышки и увеличивается на ее краях. При достаточно большом значении 0) пьезометрическая поверхность пересекает крышку сосуда (параболоид 2) и в ее центральной части возникает вакуум, имеющий максимум на оси (точка О). Когда абсолютное давление в точке О упадет до давления насыщенных паров жидкости Ли. произойдет разрыв  [c.84]

Если в промежуточных сечениях насадка скорости имеют большие значения, чем скорость выхода из насадка, то в этих сечениях при истечении в атмосферу возникает вакуум (пьезометрическая линия проходит здесь ниже оси насадка).  [c.129]

Лучистая энергия возникает за счет энергии других видов в результате сложных молекулярных и внутриатомных процессов. Природа всех лучей одинакова. Они представляют собой распространяющиеся в пространстве электромагнитные волны. Источником теплового излучения является внутренняя энергия нагретого тела. Количество лучистой энергии в основном зависит от физических свойств и температуры излучающего тела. Электромагнитные волны различаются между собой или длиной волны, или числом колебаний в секунду. Если обозначить длину волны через X, а число колебаний через N, то для лучей всех видов скорость w в абсолютном вакууме буд т равна w к-N = 300 000 км сек.  [c.458]

Сущность получения лазерного луча заключается в следующем. За счет накачки внешней энергии (электрической, световой, тепловой, химической) атомы активного вещества излучателя переходят в возбужденное состояние. Через некоторый промежуток времени возбужденный атом может излучить полученную энергию в виде фотона и возвратиться в исходное состояние. Фотон представляет собой элементарную частицу, порцию света, обладающую нулевой массой покоя и движущуюся со скоростью, равной скорости света, в вакууме. Фотоны возникают (излучаются) в процессах перехода атомов, молекул, ионов и атомных ядер из возбужденных состояний в более стабильные состояния с меньшей энергией. При определенной степени возбуждения происходит лавинообразный переход возбужденных атомов активного вещества-излучателя в более стабильное состояние. Это создает когерентное, связанное с возбужде-  [c.16]

Значительная его часть работает в жестких условиях при температуре от -160°С до +1200°С и давлении от глубокого вакуума до 3000 кгс/см и более с различными продуктами, вызывающими большую скорость коррозии и эрозии металлов.  [c.162]

В диэлектрических материалах электромагнитные колебания распространяются с фазовой скоростью, зависящей от диэлектрической проницаемости, и, естественно, со скоростью, меньшей чем в вакууме. Распространение электромагнитной энергии в среде сопровождается взаимодействием с атомами вещества. Точнее, происходит определенное воздействие электромагнитной волны на электрические заряды атома, что приводит к изменению либо скорости распространения, либо интенсивности потока.  [c.117]

Если в системе наблюдаются большие градиенты или скорости изменения свойств, то характеризовать ее величинами, не зависящими от времени и от пространственных координат, невозможно, как нельзя, например, сказать что-либо определенное о давлении газа, расширяющегося в вакууме, или о температуре тела в целом, если разные части его нагреты по-разному. В рамках термодинамики нельзя указать, какие именно градиенты-и скорости изменения свойств при этом допустимы. Уместно тем не менее дать следующую практическую рекомендацию термодинамические свойства существуют, если их удается с требуемой точностью измерить. Мы будем еще неоднократно обращаться к такому экспериментальному критерию справедливости термодинамического описания и постараемся пояснить его физическое содержание.  [c.13]

Выведем закон преломления, исходя из теории Ньютона. Пусть свет падает на границу раздела двух сред с показателями преломления Пх н 2 соответственно, причем скорости света в вакууме к скорости света в данной среде будет называться показателем преломления данной среды). Разложим скорость света в 1-й среде на горизонтальную и вертикальную составляющие Du--и Vi2- Согласно Ньютону, горизонтальные составляющие скоростей остаются неизменными, т. е. Иц — u v, в то время как V2->Vi, (при условии fii [c.4]


Электромагнитное поле распространяется в виде электромагнитной волны со скоростью V = iy щ, где с— скорость света в вакууме (с 3-10 см/с).  [c.21]

Этот факт находится в полном согласии с теорией относительности, согласно которой недостижима лишь скорость света в вакууме — с.  [c.32]

Поглощение света. Как следует из (11.15) и (11.16), поляризуемость атома и показатель преломления среды являются комплексными величинами. Это, как легко убедиться, означает, что при распространении плоской волны в данной среде помимо фазы меняется также и амплитуда. Если изменение фазы приводит к различию фазовой скорости света в среде от скорости света в вакууме, в ре-  [c.271]

Если фазовые скорости распространения левой и правой волн и и р выразить через соответствующие коэффициенты преломления м., и /г р (и,,,, = /fi p и Ул = с/п ) и принять во внимание, что со/с —2п/сТ = 2л/Яо, где — длина волны в вакууме, то имеем  [c.297]

Важнейшими технологическими параметрами при литье вакуумным всасыванием являются скорость вакууми-рования формы, величина рабочего вакуума, глубина погружения носка кристаллизатора в жидкий металл (при литье слитков), длительность вакууми-рования формы, температурные режимы литья.  [c.408]

Сущность II техника спарки электронным лучом. Сущность процесса состоит в использовании кинетической энергии потока электронов, движуп1ихся с высокими скоростями в вакууме Для умоиыиения потери кинетической энергии электронов за счет соударения с молекулами газов воздуха, а также для хими ческой и тепловой защиты катода в электронной пушке создают вакуум пор>гдка 10 —10" мм рт. ст.  [c.67]

Электронный луч представляет собой сжатый поток электронов, перемещающийся с большой скоростью от катода к аноду в сильном электрическом поле. При соударении электронного потока с твердым телом более 99 % кинетической энергии электронов переходит в тепловую, расходуемую на нагрев этого тела. Температура в месте соударения может достигать 5000—6000 °С. Электронный луч образуется за счет эмиссии электронов с нагретого в вакууме 133 (10 -i-10 ) Па катода У и с помощью электростатических и элек-  [c.202]

При диффузионной сварке соединение образуется в ре зультате взаимной диффузии атомов в поверхностных слоях контак тирующих материалов, находящихся в твердом состоянии. Температура нагрева при сварке несколько выше или ниже температурь рекристаллизации более легкоплавкового материала. Диффузионную сварку в большинстве случаев выполняют в вакууме, однако она возможна в атмосфере инертных защитных газов. Свариваемые за готовки 3 (рис. 5.45) устанавливают внутри охлаждаемой металлической камеры 2, в которой создается вакуум 133(l(H-f-10" ) Па, и нагревают с помощью вольфрамового или молибденового нагревателя или индуктора ТВЧ 4 (5 — к вакуум1юму насосу 6 — к высокочастотному генератору).Может быть исиользоваитакже и электронный луч, позволяющий нагревать заготовки с eui,e более высокими скоростями, чем при использовании ТЕ Ч. Электронный луч применяют для нагрева тугоплавких металлов и сплавов. После тогй как достигнута требуемая температура, к заготовкам прикладывают с помощью механического /, гидравлического или пневматического устройства небольшое сжимающее давление (1—20 МПа) в течение 5—20 мин. Такая длительная выдержка увеличивает площадь контакта между предварительно очищенными свариваемыми поверхностями заготовок. Время нагрева определяется родом свариваемого металла, размерами и конфигурациями заготовок.  [c.226]

Термопары вольфрам-рений успешно используются в инертном газе высокой чистоты, в водороде, а также в вакууме с ограничениями, указанными выше. Для стабилизации размеров зерна рекомендуется предвари тельный отжиг новой термопарной проволоки. Это делается в инертной атмосфере при температуре 2100 °С в течение от одного часа для и — 3 % Не до нескольких минут для У — 25% Не. Такая процедура отжига снижает также скорость образования интерметаллической о-фазы в сплаве Ш — 25% Не, которая в противном случае выпадает в части проволоки, находящейся длительное время при температурах от 800 до 1300 °С. Градуировочная таблица зависимости термо-э.д.с. от температуры была предложена [2], но пока формально не утверждена. Одно из важных применений термопар водвф-рам-рений будет рассмотрено ниже и состоит в измерении температур в ядерной энергетике в присутствии потока нейтронов.  [c.292]

При какой угловой скорости равновесие жидкости в сосуде нарушится, если разрыв жидкости иронсходит при вакууме 100 кПа  [c.91]

Перспективной является однопроходная сварка толстостенных сосудов. электронным лучом к вакууме. Экснернментально показано, что при нспользованнн сварки горизонтальным лучом можно выполнить продольные и кольцевые ншы металла толщиной 250 мм и (Золее при скорости сварки 2,5,..5 м/ч. Однако для производственного применения этого перспективного метода еще требуется отработка ряда технологических вопросов, а также создание вакуумных камер больших размеров.  [c.287]

Непрерывный научно-технический прогресс невозможен без создания новых материалов, отвечающих современным требованиям, которые предъявляются к их эксплуатационным свойствам и параметрам. Так, производство машин немыслимо без использования особо чистых металлов, высокопрочных сплавов, металлокерамики, пластмасс и других неметаллических материалов. При этом большое значение приобретает прочность и надежность металлов и других материалов, испТзльзуемых в условиях сверхвысоких давлений, температур, скоростей, глубокого вакуума.  [c.3]

В ранних опытах было установлено, что усталостная прочность меди в вакууме на 14 % больше, чем в воздухе. Для углеродистой стали это увеличение составило лишь 5 %, а для латуни 70-30 усталостная прочность возросла на 26 % [681. Более поздние исследования [691, показали, что время до разрушения обескислороженной высокоэлектропроводной меди при давлении воздуха 1,3-10 Па в 20 раз больше, чем при атмосферном давлении, от э( кт приписывают, главным образом, действию кислорода. Кислород незначительно влияет на зарождение трещин, но существенно повышает скорость их распространения. Контакт с воздухом также влияет на предел выносливости чистого алюминия, но в отличие от меди, пары воды влияют на алюминий и в вакууме. Золото, которое не окисляется и не хемосорбирует кислород, имеет одинаковую усталостную прочность на воздухе и в вакууме.  [c.157]


Как известно, электромагнитная волна, являющаяся носителем энергии излучения, представляет собой распространение в среде изменяющихся во времени напряженностей электрического и магнитного полей [1]. Векторы электрической и магнитной напряженностей взаимно перпендикулярны. Скорость распространения этих поперечных волн зависит от свойств среды и от частоты. В вакууме они раотространяются со скоростью света (е л З-10 м/с).  [c.12]

Брэдфорд [71] использовал метод термического испарения в вакууме для нанесения алюминия и двуокиси кремния на пла-стиню/ из нержавеющей стали. Нанесение осуществлялось при давлении 10 -133 Па. В испарительную камеру с вольфрамовым нагревателем засыпался алюминий чистоты 99,99% и наносился на диск из нержавеющей стали. Расстояние до покрываемой детали составляло 280 мм. После напыления алюминия таким же образом наносят двуокись кремния. Скорость нанесения 300 нм/с. Степень черноты покрытия при толщине слоя 0,5 мкм составила 0,52. Следует отметить, что увеличение толщины покрытия позволяет повысить степень черноты, однако при этом ухудшается адгезия.  [c.107]

Испытания в вакууме. Стабильность оптических характеристик покрытий — их излучательная и отражательная способность — во многом определяется состоянием поверхности. В свою очередь состояние поверхности зависит от собственной температуры покрытия, а также от цротекания различных процессов, возникающих в результате взаимодействия между поверхностным слоем вещества покрытия и окружающей средой. В этом плане осогбый интерес представляет проведение испытаний по установлению постоянства оптических свойств покрытий или одновременном воздействии высоких температур и вакуума. В этом случае излучательная способность будет зависеть не только от температуры, но и от упругости пара вещества покрытия. Испарение покрытия изменяет характеристики излучения и размеры детали. Для определения скорости испарения при эксплуатационных условиях (температура и давление) проводятся испытания в специальных камерах. Наиболее простым и чувствительным является метод испарения с открытой поверхности в вакууме (метод Ленгмюра). Образец с покрытием помещают в вакуумную камеру и нагревают до требуемой температуры, после чего он выдерживается в этих условиях в течение определенного времени. Одна из подобных камер показана на рис. 7-14 [52]. Молекулы испаряющегося покрытия конденсируются на холодных стенках камеры. Для определения скорости  [c.180]

Смазку в малогабаритные подшипники, вращающиеся со скоростью п<50 м/с, подают фитилями или дозирующей маеленкой, отрегулированной на подачу нескольких капель масла в час. Фетровые фитили при работе выполняют и роль фильтра. Твердые смазки (графит, дисульфид молибдена и др.) используют в узлах, работающих в вакууме, при низких (/< —100° С) или высоких ( >300° С) температурах. В этом случае сепараторы подшипников изготовляют из самосмазывающихся материалов. Тела качения, соприкасаясь со стенками гнезд сепаратора, снимают с них тонкую пленку твердой смазки и переносят ее на поверхность качения колец подшипника.  [c.324]

Точность измерения скорости света определяется в этом случае, во-первых, тем, насколько стабилен данный источник, и, во-вторых, тем, с какой точностью удается измерить частоту и длину волны излучения. Источниками электромагнитного излучения, наиболее удовлетворяющими этим требованиям, являются лазеры. Измерение длины В0Л1ГЫ , основанное на явлении интерференции света, производится с ошибкой, не превышающей величину порядка 10 , Измерение частоты излучения основано на технике нелинейного преобразования частоты. Используемый прибор (например, полупроводниковый диод), приняв синусоидальное колебание некоторой частоты, дает на выходе колебания более высокой частоты — удвоенной, утроенной и т. д. Этот метод с помощью нелинейного элемента излучс1П1Я кратной частоты позволяет измерять частоту излучения лазера и сравнивать его с частотами, измеренным прежде. Согласно результатам изме-рени , в1> пол 1ен ЫМ этим методом в 1972 г., скорость света в вакууме равна (299792456,2 1,1) м/с. Новые методы разработки нелинейных фотодиодов, испо.и.зусмых для смещения частот светового диапазона спектра, позволят в будущем увеличить точность лазерных измерений скорости света.  [c.418]


Смотреть страницы где упоминается термин Скорость вакуум : [c.28]    [c.68]    [c.54]    [c.138]    [c.48]    [c.312]    [c.310]    [c.60]    [c.77]    [c.7]    [c.8]    [c.42]    [c.72]    [c.166]    [c.249]    [c.420]    [c.421]    [c.422]    [c.277]    [c.251]   
Газовая динамика (1988) -- [ c.180 ]



ПОИСК



Вакуум

Внесение поправок на изменение вакуума и потерь с выходной скоростью (Ав)

Групповая скорость электромагнитных волн в вакууме

Новиков. Влияние скорости движения тела на тепло- и массообмен в вакууме

Потеря напора. Вакуум в фильтре. Регуляторы скорости фильтрации

Скорость истечения в вакуум

Скорость распространения электромагнитных волн в вакууме (скорость света)

Скорость света в вакууме

Скорость установившегося адиабатического истечения газа в вакуум



© 2025 Mash-xxl.info Реклама на сайте