Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость света в вакууме

Тепловое излучение как процесс распространения электромагнитных волн характеризуется длиной волны X и частотой колебаний v = /X, где с — скорость света (в вакууме с = 3-10 м/с).  [c.90]

Сущность получения лазерного луча заключается в следующем. За счет накачки внешней энергии (электрической, световой, тепловой, химической) атомы активного вещества излучателя переходят в возбужденное состояние. Через некоторый промежуток времени возбужденный атом может излучить полученную энергию в виде фотона и возвратиться в исходное состояние. Фотон представляет собой элементарную частицу, порцию света, обладающую нулевой массой покоя и движущуюся со скоростью, равной скорости света, в вакууме. Фотоны возникают (излучаются) в процессах перехода атомов, молекул, ионов и атомных ядер из возбужденных состояний в более стабильные состояния с меньшей энергией. При определенной степени возбуждения происходит лавинообразный переход возбужденных атомов активного вещества-излучателя в более стабильное состояние. Это создает когерентное, связанное с возбужде-  [c.16]


Выведем закон преломления, исходя из теории Ньютона. Пусть свет падает на границу раздела двух сред с показателями преломления Пх н 2 соответственно, причем скорости света в вакууме к скорости света в данной среде будет называться показателем преломления данной среды). Разложим скорость света в 1-й среде на горизонтальную и вертикальную составляющие Du--и Vi2- Согласно Ньютону, горизонтальные составляющие скоростей остаются неизменными, т. е. Иц — u v, в то время как V2->Vi, (при условии fii [c.4]

Электромагнитное поле распространяется в виде электромагнитной волны со скоростью V = iy щ, где с— скорость света в вакууме (с 3-10 см/с).  [c.21]

Этот факт находится в полном согласии с теорией относительности, согласно которой недостижима лишь скорость света в вакууме — с.  [c.32]

Поглощение света. Как следует из (11.15) и (11.16), поляризуемость атома и показатель преломления среды являются комплексными величинами. Это, как легко убедиться, означает, что при распространении плоской волны в данной среде помимо фазы меняется также и амплитуда. Если изменение фазы приводит к различию фазовой скорости света в среде от скорости света в вакууме, в ре-  [c.271]

В действительности это не так — существует конечная максимальная скорость распространения взаимодействий, которая равна скорости света в вакууме. Поэтому третий закон Ньютона (а также и второй) имеет определенные пределы применимости. Однако при скоростях тел, значительно меньших скорости света, с которыми имеет дело ньютоновская механика, оба закона выполняются с очень большой точностью. Свидетельством этому являются хотя бы расчеты траекторий планет и искусственных спутников, которые проводятся с астрономической точностью именно с помощью законов Ньютона.  [c.42]

Второй постулат утверждает, что скорость света в вакууме не зависит от движения источника света и одинакова во всех направлениях.  [c.177]

Это значит, что скорость света в вакууме одинакова во всех инерциальных системах отсчета. Таким образом, скорость света занимает особое положение в природе, В отличие от всех других скоростей, меняющихся при переходе от одной системы отсчета к другой, скорость света в пустоте является инвариантной величиной. Как мы увидим, наличие такой скорости существенно изменяет представления о пространстве и времени.  [c.178]


Из постулатов Эйнштейна следует также, что скорость света в вакууме является предельной никакой сигнал, никакое воздействие одного тела на другое не могут распространяться со скоростью, превышающей скорость света в вакууме. Именно предельный характер этой скорости и объясняет одинаковость скорости света во всех системах отсчета. В самом деле, согласно принципу относительности, законы природы должны быть одинаковы во всех инерциальных системах отсчета. Тот факт, что скорость любого сигнала не может превышать предельное значение, есть также закон природы. Следовательно, значение предельной скорости — скорости света в вакууме— должно быть одинаково во всех инерциальных системах отсчета в противном случае эти системы можно было бы отличить друг от друга.  [c.178]

В начальный момент = 0 их показания совпадали с часами /(-системы. На сколько секунд отстанут движущиеся часы за время / = 60 мин (это время по часам /(-системы), если а) а = 1800 км/ч (реактивный самолет) б) у = = ЧьС, где с — скорость света в вакууме  [c.185]

Далее, из преобразований Лоренца видно, что при V> подкоренные выражения становятся отрицательными и формулы теряют физический смысл. Это соответствует тому факту, что движение тел со скоростью, большей скорости света в вакууме, невозможно. Нельзя даже пользоваться системой отсчета, движущейся со скоростью V= при этом подкоренные выражения обращаются в нуль и формулы также теряют физический смысл. Это значит, что, например, с фотоном, движущимся со скоростью с, принципиально не может быть связана система отсчета. Или иначе не существует такой системы отсчета, в которой фотон был бы неподвижным.  [c.193]

Первой из этих величин является универсальная скорость распространения взаимодействий, равная скорости света в вакууме. Другой, также весьма важной инвариантной величиной является так называемый интервал. Si2 между событиями 1 и 2, квадрат которого определяется как  [c.197]

Скорость света в вакууме с = 2,998-108 м/с  [c.246]

Ускорение частиц в циклотроне с постоянным периодом возможно лишь до значений скоростей, значительно меньших скорости света. С приближением скорости частицы, к скорости света в вакууме, равной с=300 ООО км/с, масса частицы возрастает, вследствие чего увеличивается период ее обращения в магнитном поле. Равенство периода обращения частицы и периода изменения электрического поля нарушается, ускорение прекращается.  [c.182]

На вопрос о природе света и механизме его распространения давала ответ гипотеза Максвелла. Па основании совпадения экспериментально измеренного значения скорости света в вакууме со значением скорости распространения электромагнитных волн Максвелл высказал предположение, что свет — электромагнитные волны. Эта гипотеза подтверждается многими экспериментальными фактами. Представлениям электромагнитной теории света полностью соответствуют экспериментально открытые законы отражения и  [c.263]

Отсюда следовало сделать вывод, что скорость света в вакууме постоянна и одинакова во всех инерциальных системах отсчета.  [c.282]

Принцип постоянства скорости света — скорость света в вакууме не зависит от скорости движения источника и наблюдателя.  [c.283]

При любых взаимодействиях изменение полной энергии тела АЕ равно произведению изменения массы Ати на квадрат скорости света в вакууме  [c.288]

Скорость света в вакууме с 2,99792458-10 м-с  [c.350]

В середине XIX в. были также накоплены сведения об электро динамической постоянной, фигурирующей при переходе от электрических к магнитным единицам. Она имеет размерность скорости и по значению очень близка к скорости света в вакууме. Наилучшие измерения, проведенные электромагнитными методами, приводили к значению (299 770 30) 10 см/с. Имеются данные, что столь хорошее совпадение этих констант, казавшееся в те времена случайным, стимулировало исследования Максвелла по созданию единой теории распространения электромагнитных волн. После появления этой фундаментальной теории уже не могло быть сомнений в том, что скорость света в вакууме и электродинамическая постоянная — это одна и та же константа, а совпадение результатов измерений ее значения, выполненных различными методами, является доказательством универсальности теории Максвелла, справедливой для любых электромагнитных волн. Ниже будет охарактеризован современный способ прецизионного определения скорости света в вакууме.  [c.46]


Столь точное определение скорости света в вакууме важно для решения ряда метрологических проблем. В частности, дискутируется вопрос о кардинальном изменении системы определения эталонов длины и времени, которые сейчас являются независимыми и сличение с которыми проводится путем длительных и сложных измерений. Высокая точность определения с позволяет применить следующую схему если принять за основу некоторую скорость света в вакууме (например, с точно равно  [c.51]

Заслуживает особого упоминания случай и > с (фазовая скорость больше скорости света в вакууме), который не противоречит теории относительности, ограничивающей лишь скорость сигнала (групповую скорость). С фазовой скоростью и распространяется в среде немодулированная волна. Для передачи какой-то информации нужно промодулировать волну, причем экспериментальное значение скорости сигнала не может превосходить скорости света в вакууме. В дальнейшем рассмотрены случаи, когда п < 1,, т. е. и > с (например, для радиоволн в ионосфере, при исследовании рентгеновских лучей и-др.).  [c.51]

Групповая скорость радиоволн в ионосфере, определяющая скорость переноса энергии, конечно, меньше скорости света в вакууме. Для вычисления U = d o/dk запишем (4.15) в виде  [c.147]

Итак, установлено, что скорость i> заряженных частиц должна быть больше с /п, но конечно, меньше с скорости света в вакууме, как этого требует теория относительности.  [c.173]

Вместе с тем скорость рассматриваемой системы отсчета всегда должна быть меньше скорости света в вакууме, так как при V > с преобразования Лоренца теряют смысл. Следовательно, скорость света в вакууме с 3 см/с является, предельной  [c.378]

Точность измерения скорости света определяется в этом случае, во-первых, тем, насколько стабилен данный источник, и, во-вторых, тем, с какой точностью удается измерить частоту и длину волны излучения. Источниками электромагнитного излучения, наиболее удовлетворяющими этим требованиям, являются лазеры. Измерение длины В0Л1ГЫ , основанное на явлении интерференции света, производится с ошибкой, не превышающей величину порядка 10 , Измерение частоты излучения основано на технике нелинейного преобразования частоты. Используемый прибор (например, полупроводниковый диод), приняв синусоидальное колебание некоторой частоты, дает на выходе колебания более высокой частоты — удвоенной, утроенной и т. д. Этот метод с помощью нелинейного элемента излучс1П1Я кратной частоты позволяет измерять частоту излучения лазера и сравнивать его с частотами, измеренным прежде. Согласно результатам изме-рени , в1> пол 1ен ЫМ этим методом в 1972 г., скорость света в вакууме равна (299792456,2 1,1) м/с. Новые методы разработки нелинейных фотодиодов, испо.и.зусмых для смещения частот светового диапазона спектра, позволят в будущем увеличить точность лазерных измерений скорости света.  [c.418]

Возрастание массы тела с увеличением скорости приводит к тому, что ни одно тело с массой покоя, не равной нулю, не моясет достиг11уть скорости, равной скорости света в вакууме, или превысить эту скорость.  [c.288]

Первая оценка скорости света в вакууме была проведена еще в конце XVn в. и базировалась на астрономических наблюдениях. Было замечено, что промежуток времени между затмениями ближайшего спутника Юпитера уменьшается при сближении с Землей и увеличивается при их расхождении. Анализируя эти наблюдения, Ремер предположил, что свет распространяется с конечной скоростью, равной 3,1см/с. Эта смелая идея находилась в противоречии с господствующими тогда взглядами школы Декарта, согласно которым свет должен распространяться мгновенно. В XIX в. усилиями Физо, Фуко и других физиков, развивавших волновую теорию света, были проведены тщательные измерения этой константы. При этом использовались различные лабораторные устройства. В частности, применялся метод вращающегося зеркала, который был в начале XX в. усовершенствован Майкельсоном, определившим скорость света с высокой точностью. Мы не будем подробно рассматривать эти тонкие и остроумные исследования. Укажем лишь, что во всех таких опытах фактически измеряется время, необходимое для прохождения импульсом света вполне определенного пути. Таким образом, в результате эксперимента измеряется скорость светового импульса, точнее, скорость некоторой его части. Например, можно вести измерения по переднему или заднему фронту сигнала, исследовать область максимальной энергии импульса и т. д.  [c.45]

В результате прогресса лазерной техники и успешного развития радиотехнических методов преобразования частоты в оптическом диапазоне удалось существенно повысить точность измерения скорости света в вакууме. При этом проводились независимые измерения длины волн и частоты специально стаби-лизированног о неон-гелиевого лазера, генерирующего в инфракрасной области спектра (л = 3..39 мкм). Таким способом в 1972 г. скорость света была определена с большой точностью (iSf/ = 3 10 ). Авторы получили с = (299792,4562 0,0011) км/с и считают, что в дальнейшем ошибка может быть еще уменьшена за счет улучшения воспроизводимости измерения первичных эталонов длины и времени (см. 5.7).  [c.51]

При этом искажается форма импульса и изменяется частота, соответствующая максимуму спектра В процессе расгфосгра -нения импульс может совершенно изменить свою исходную форму. Физические причины таких искажений многообразны так, например, в активной среде лазера наибольшее усиление происходит в передней части импульса, что должно приводить к дополнительному сдвигу максимума и соответственному увеличению групповой скорости, определяемой по указанной выше формальной схеме. Однако такая внутренняя перестройка импульса не может быть использована для передачи сигнала. В связи с этим нужно весьма критически относиться к иногда появляющимся публикациям, в которых утверждается, что групповая скорость лазерного излучения может быть больше скорости света в вакууме. Нужно ясно представлять себе, что в этом случае понятие групповой скорости теряет свой первоначальный смысл и величина U уже не определяет скорость распространения сигнала, которая, согласно специальной теории относительности, никогда не может быть больше скорости света в вакууме.  [c.53]


Рис. 4.6 показывает, что на участке ВС показатель преломления убывает при возрастании частоты и после перехода через центр линии поглощения (т = то) становится меньше единицы. Это значит, что в данных условиях фазовая скорость волны больше скорости света в вакууме. Мы уже сталкивались с под<збными явлениями, и выше указывалось, что соотношение и > с не противоречит теории относительности, запрет которой U < с) не распространяется лишь на скорость переноса энергии. Однако нужно предостеречь читателя от попыток оценить для этого случая скорость и, используя формулу Рэлея. Детальное исследование показывает, что такие оценки некорректны при столь резких изменениях показателя преломления, которые происходят вблизи линии поглощения, и в этом случае необходимо различать групповую скорость волн и скорость сигнала (см. 1.4).  [c.151]

Второй постулат свод1ггся к утверждению, что существует конечная максимальная скорость распространения любого взаимодействия, которая равна с — скорости света в вакууме. По принципу относительности эта скорость одинакова во всех инерциальных системах и не зависит от длины волны, интенсивности и относительной скорости движения источника и приемника света. Таким образом отвергаются теорема сложения скоростей в классической механике и различные построения, которые выдвигались в свое время для истолкования отрицательного результата опыта Майкельсона - Морли.  [c.372]


Смотреть страницы где упоминается термин Скорость света в вакууме : [c.77]    [c.7]    [c.8]    [c.72]    [c.166]    [c.249]    [c.420]    [c.421]    [c.422]    [c.277]    [c.251]    [c.265]    [c.287]    [c.339]    [c.342]    [c.47]    [c.53]    [c.375]   
Смотреть главы в:

Теория упругости Изд.2  -> Скорость света в вакууме


Единицы физических величин и их размерности Изд.3 (1988) -- [ c.233 , c.346 ]

Общий курс физики Оптика Т 4 (0) -- [ c.632 ]

Справочное руководство по физике (0) -- [ c.396 , c.555 ]



ПОИСК



Вакуум

Скорость вакуум

Скорость распространения электромагнитных волн в вакууме (скорость света)

Скорость света



© 2025 Mash-xxl.info Реклама на сайте