Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепло необратимое

Вместо потерь тепла вследствие теплопроводности, имеющих место в термоэлектрогенераторах, в ТЭП основные потери тепла (необратимый теплоперенос от горячего источника к холодному) обусловлены излучением.  [c.415]

Фиг. 43. Изменение энтропии и приведенное тепло необратимого процесса. Фиг. 43. <a href="/info/5812">Изменение энтропии</a> и приведенное тепло необратимого процесса.

В свою очередь потери на деформацию шины состоят из. потерь мощности на упругие деформации шины и на внутреннее трение. Затраты мощности на упругие деформации компенсируются при снятии нагрузки (обратимые потери), в то время как энергия, затраченная на внутреннее трение, превращается в тепло (необратимые потери). Следовательно, энергия, теряемая на внутреннее трение в шине, зависит от величины деформации шины под действием нагрузки на колесо (рис. 234). Как видно из рисунка, работа, затраченная на деформацию шины при ее нагрузке (вся площадь под верхней кривой ОВ), больше работы, возвращенной при разгрузке (площадь под нижней кривой), а площадь между кривыми соответствует затрате энергии на трение. Эти кривые образуют так называемую петлю гистерезиса, которая характеризует потерю механической энергии на внутреннее трение в шине. Чем выше потери энергии на внутреннее трение в материале шины, тем больше образуется в ней тепла.  [c.345]

Отсюда видно, что энтропия экстремальна в точке перегиба скорости, т. е. в центре волны. Возникновение максимума энтропии в волне связано с существованием теплопроводности. Один из диссипативных процессов, вязкость, приводит только к возрастанию энтропии, пропорциональному (йи/йху. Благодаря же теплопроводности тепло необратимым  [c.365]

Эти явления для удобства обозрения сведены ниже в табл. 2 и 3. Наряду с такими фундаментальными явлениями, как электромагнитная индукция и обратный ей электродинамический эффект, или явления термодинамического преобразования, составляющие основу всей нашей современной энергетики, мы рассмотрим явления, используемые лишь в приборостроении, как, например, пьезоэлектрический и магнитострикционный эффекты. Обратимые четные и нечетные явления сгруппированы в табл. 2 и 3 соответственно. В табл. 2 и 3 по строкам и но столбцам стоят виды энергии. В табл. 3 тепловая энергия отсутствует, так как четные преобразования других видов энергии в тепло необратимы.  [c.86]

Конечная скорость протекания необратимого процесса всегда связана с дополнительной затратой энергии на преодоление сил трения. Следовательно, наличие трения является признаком необратимости процесса. Необратимыми процессами являются также процессы, протекающие при конечной разности температур между рабочим телом н источниками тепла, процессы диффузии, процесс расширения в пустоту и ряд других.  [c.61]


Необратимость тепловых процессов. При соприкосновении тел процесс теплопередачи происходит самопроизвольно от горячего тела к холодному до х пор, пока оба тела не будут иметь одинаковые температуры. Все наблюдали, как налитый в чашку горячий чай постепенно остывает, нагревая окружающий воздух. Но никто не видел, чтобы теплый чай в чашке вдруг закипел за счет охлаждения окружающего его воздуха.  [c.104]

X) Термин "стационарность здесь употреблен п термодинамическом смысле - изменение энтропии и количества тепла для тела н целом равно нулю. Условие (433) было получено из принципа И.Р Пригожина [4] о минимальности величины ежесекундного прироста энтропии, обусловленной необратимыми изменениями внутри системы.  [c.327]

Общая необратимая потеря тепла выражается интегралом Т dS, причем  [c.78]

Одним из важнейших применений линейной термодинамики необратимых процессов является построение теории термоэлектрических явлений, которые всегда связаны с необратимым переносом тепла. Экспериментально известны три термоэлектрических явления в изотропных телах.  [c.22]

Для обратного протекания процесса необходима затрата извне некоторого количества энергии. Ряд простых примеров подтверждает эти выводы. Газ всегда вытекает из резервуара в окружающее пространство, если в этом пространстве давление ниже, чем в резервуаре. Для подачи газа в резервуар необходимо использовать компрессоры, потребляющие извне механическую работу. Теплота может переходить только от горячего тела к холодному, но для обратного направления теплового потока необходимо применение холодильных машин, которые, получая извне механическую работу, заставляют теплоту перетекать от холодного тела к теплому. Из этих примеров видно, что обратное направление любого действительного (необратимого) процесса возможно только при условии подведения к системе, в которой происходит этот процесс, дополнительного количества энергии извне.  [c.50]

Первый закон термодинамики представляет собой математическое выражение общего закона сохранения и превращения энергии. Он рассматривает любые взаимопревращения энергии и изучает явления в этих взаимопревращениях, в частности при осуществлении различных термодинамических процессов. Но этот закон не определяет условий возможности таких преобразований согласно этому закону равновозможны оба направления в протекании процесса, т. е. перетекание теплоты от теплого тела к холодному и от холодного тела к теплому. Между тем действительные процессы, происходящие вокруг нас, необратимы, так как они самопроизвольно идут только в одном направлении теплота идет от теплого тела к холодному, газ вытекает только из резервуара с высоким даЕ лением в окружающее пространство и т. п. Опыт показывает, что все процессы идут в направлении установления в любой системе равновесия, т. е. выравнивания в ней давлений, температур, концентраций и др.  [c.63]

Процесс изменения состояния находящегося в окружающей среде тела может быть как обратимым, так и необратимым. В течение этого процесса тело будет обмениваться теплом с окружающей средой и, кроме того, совершать полезную работу над внешним объектом работы (который предполагается теплоизолированным как от рассматриваемого тела, так и от окружающей среды). Так как температура окружающей среды неизменна, то теплота Q, полученная телом от окружающей среды, равняется —T AS, где as = S2 — Si есть изменение энтропии окружающей среды в результате процесса /—2.  [c.81]

Здесь Р (а) — линейная функция от о и производных о до порядка п включительно с постоянными коэффициентами, Q e) — такая же функция от деформации е. К соотношению вида (17.5.9) можно прийти, если рассмотреть модель, составленную из большого числа пружин и вязких сопротивлений, соединенных в разных комбинациях последовательно и параллельно. Конечно, было бы достаточно наивно искать в структуре материала соответствующие упругие и вязкие элементы, однако способ, основанный на построении реологических моделей, обладает некоторым преимуществом. Мы убедились, что в уравнении (17.5.8) должно быть J. < , при этом не было необходимости в обращении к модели, условие < Е, из которого следует первое неравенство, означает только то, что приложенная сила совершает положительную работу, расходуемую на накопление энергии деформации, а частично рассеиваемую в виде тепла. В общем случае (17.5.9) тоже должны быть выполнены некоторые неравенства, которые могут быть не столь очевидны. Но если построена эквивалентная реологическая модель из стержней, накапливающих энергию, и вязких сопротивлений, рассеивающих ее, то у нас есть полная уверенность в том, что для соответствующего модельного тела законы термодинамики будут выполняться. Второе преимущество модельных представлений состоит в том, что для любой заданной конфигурации системы может быть вычислена внутренняя энергия, представляющая собою энергию упругих пружин, и скорость необратимой диссипации энергии вязкими элементами. Имея в распоряжении закон наследственной упругости (17.5.1), (17.5.2), мы можем подсчитать полную работу деформирования, но не можем отделить накопленную энергию от рассеянной. Поэтому, например. Блонд целиком строит изложение теории на модельных представлениях.  [c.590]


Проделав необходимые элементарные вычисления, которые мы здесь не приводим, получим следующий результат. Работа будет состоять из двух частей, первая часть — периодическая функция от t, т. е. полностью обратимая работа упругих тел. Но вторая часть оказывается пропорциональной времени t, следовательно, это та часть работы, которая рассеивается необратимым образом, превращаясь в тепло. Величина необратимой работы в единицу времени называется мощностью диссипации Z) выделяя из интеграла работы множитель при t, получим  [c.596]

Энергия единицы массы, веса или объема движущейся жидкости равна сумме механической и внутренней энергии. По закону сохранения энергии в рассматриваемом случае суммарное количество энергии остается постоянным. При течении жидкости от одного сечения канала к другому происходит процесс необратимого превращения части механической энергии во внутреннюю (тепловую). Следовательно, вдоль потока при отсутствии подвода тепла или механической энергии извне механическая энергия потока снижается и соответственно увеличивается внутренняя энергия.  [c.99]

Разность механической энергии до и после скачка в виде тепла подводится к массе газа. Таким образом, хотя и нет подвода тепла к потоку газа из внешней среды, происходит перераспределение запаса удельной энергии и после скачка уплотнения запас механической энергии необратимо снижается. Зависимость между плотностью и давлением газа до и после скачка уплотнения уже не адиабатическая.  [c.123]

Рассмотрим процесс течения на t -s-диаграмме (рис. 76), которая широко применяется для анализа работы сопл паровых и газовых турбин. По оси абсцисс откладывается энтропия S, которая характеризует энергию, необратимо перешедшую в тепло. Для вязкого газа энтропия учитывает работу сил сопротивления. Движение невязкого газа происходит при постоянной энтропии, поэтому такой процесс называют изоэнтропическим. На рис. 76 он изображен вертикальной прямой 1—2.  [c.126]

Чтобы объяснить возникновение местных потерь, нужно непосредственно наблюдать явление. Как видно из рис. 81, на участке С—2 наряду с основным течением четко различается область вихревого движения (на рис. 81 она обозначена S). Скорости движения частиц в этой зоне значительно меньше, чем в основном потоке. Это и обусловливает в соответствии с формулой (6) появление значительных касательных напряжений и отвечающих им сил сопротивлений. Работа этих сил осуществляется за счет кинетической энергии суженной части потока, которая вследствие действия вязкости необратимо переходит в тепло. Поэтому давление в сечении 2—2 за местным сопротивлением полностью не восстанавливается (хотя скорости в этом сечении такие же, как и в сечении I—/) и меньше давления pi.  [c.133]

В приборах и других точных механизмах, передающих малую мощность, поддержание требуемой угловой скорости движения рабочего звена осуществляется двумя способами а) посредством необратимого превращения излишней (избыточной) энергии двигателя в тепло, с помощью тормозных регуляторов скорости  [c.385]

Поэтому такие процессы получили название необратимых процессов. Тоже произойдет, если процесс будет протекать с конечной разностью температур между температурой источника тепла и температурой газа.  [c.54]

Сравним цикл Карно с произвольным, но также обратимым циклом, осуществляемым между теми же источниками тепла и производящим то же количество работы. При этом безразлично, осуществим ли второй цикл в действительности или нет. (Нанример, можно было бы себе представить термодинамический цикл, в котором тепло подводится к горячему спаю термопары и отводится от холодного и в котором превращение тепла в электроэнергию происходит непосредственно без использования тепловой машины. К сожалению, этот заманчивый процесс характеризуется на практике чрезвычайно низким к. п. д., поскольку хорошие электрические проводники являются также хорошими проводниками тепла, по которым тепло необратимо перетекает от горячего спая к холодному.) Обратимся вновь к рис. 31 и представим себе, что один из циклов работает как силовой, а другой как тепловой насос. Тогда с помощью тех же рассул<дений, что и выше, легко показать, что противоречия второму закону не будет лишь при одинаковых величинах превращаемых количеств тепла. Отсюда следует, что коэффициент полезного действия всех обратимых циклов, работающих между источниками тепла с одинаковой температурой, должен быть одинаков.  [c.66]

Эти соотношения позволяют найти величину всех трех термоэлектрических эффектов, если известен хотя бы один и если 5 или р, известны в небольшом интервале температур вблизи Т. Применяемые на практике методы определения 5, р и П изложены в работах Бернара [3] и Блатта [12]. При выводе приведенных выше соотношений Томсон полагал, что такие обратимые процессы, как эффекты Пельтье и Томсона, можно рассматривать вне зависимости от происходящих одновременно необратимых явлений теплопроводности и выделения джоулева тепла. Наличие необратимых процессов делает сомнительным применение второго начала термодинамики в обратимой форме, однако Томсон получил правильный результат. Общая теория, рассматривавшая одновременно обратимые и необратимые процессы, была развита в 1931 г. Онсагером [47, 48]. Ее основы изложены Бернаром [3].  [c.271]

Располагаемая работа при течении газа может быть получена за счет внешнего тепла и уменьиления энтальпии газа. Это уравнение справедливо как для обратимых, так и для необратимых процессов течения газа с трением.  [c.201]


При наличии фазовых переходов sin а 1, поглощаемая энергия Ф > 0 она идет на медленный заметный через много пульсаций нагрев жидкости п ее испарение, в результате чего пузырек может медленно расти за счет энергии внешнего поля, которая сначала передается жидкости в виде кинетической энергии, затем воспрп-пимается пузырьком в виде энергии сжатия и нагрева. Необратимость теплообменных процессов приводит к тому, что пузырек в процессе сжатия отдает жидкости больше тепла, чем забирает обратно в процессе расширения, когда его температура ниже температуры жидкости. Этот избыток тепла, равный Ф, и идет на необходимый нагрев и испарение жидкости. Обозначим скорость  [c.308]

Как видно, основные потери приходятся на компрессор с теплообменным аппаратом и низкотемпературную противоточную вихревую трубу. Если потери в вихревой трубе трудноустранимы и связаны с ее необратимостью, а их уменьшение может быть достигнуто лишь в результате совершенствования процесса энергоразделения, то суммарные потери могут быть снижены использованием эксергии тепла. При этом отбираемое в теплообменнике тепло может использоваться на нафев сжатого воздуха, поступающего в вихревую трубу, работающую на генерацию нафетого потока в случае использования двухкамерного термостата. Вариант схемы двухкамерного термостата без утилизации тепла сжатого воздуха на входе из компрессора (рис. 5.17) позволяет полу-  [c.251]

В качестве примера рассмотрим выравнивание температуры двух кусков металла, соединенных плохим теплопроводником. Здесь только состояние теплопроводящей перемычки будет заведомо неравновесным, поскольку разные ее концы будут иметь разную температуру. Перемычка потому и проводит тепло плохо, что скорость установления в ней термодинамического равновесия очень мала. Что же касается кусков металла, то, если точность измерений такова, что их можно все время считать однородно нагретыми, с той же точностью этот необратимый процесс будет для них равновесным. Тогда для вычисления различных макроскопических величин, характеризующих тело, можно использовать формулы, относящиеся к равновесному случаю. Однако если мы захотим—экспериментально и теоретически — исследовать как раз распределение температуры по металлу, мы должны будем—экспериментально—повысить точность измерений, а теоретически — перестать считать процесс равновесным.  [c.101]

При изучении движения в упругих телах мы до сих пор считали, что процесс деформирования происходит обратимым образом. В действительности процесс термодинамически обратим, только если он происходит с бесконечно малой скоростью, так что в каждый данный момент в теле успевает установиться состояние термодинамического равновесия. Реальное движение происходит, однако, с конечной скоростью, тело не находится в каждый данный момент в равновесии, и поэтому в нем происходят процессы, съремящиеся привести его в равновесное состояние. Наличие этих процессов и приводит к необратимости движения, проявляющейся, в частности, в диссипации механической энергии, переходящей в конце концов в тепло ).  [c.177]

После крушения теории теплорода теплота окончательно рассматривается как энергия движения составляющих тело материальных частиц (атомов, молекул). Но между теплотой и механической энергией вскоре обнаружились принципиальные отличия. Например, при торможении автомобиля его тормозные колодки нагреваются, но обратный процесс абсолютно невозможен — сколько бы мы ни нагревали колодки, автомобиль все равно останется на месте. Закон сохранения и превращения энергии, раскрывая количественную сторону превращений энергии, ничего не говорит о принцигшальных качественных отличиях между ее различными формами. Можно указать на другие принципиальные особенности тепловых явлений. Одним из самых очевидных наблюдений является то, что при различных видах работы часть энергии выделяется в виде теплоты. В природе существует тенденция к необратимому превращению различных видов энергии в теплоту, поскольку обратное превращение тепла в работу, за исключением изотермических процессов, невозможно. Другой, не менее очевидной особенностью тепловых явлений является то, что нагретые тела всегда стремятся прийти в равновесие с окружающей средой. Но и в этих процессах передачи теплоты существует односторонность, которую Р. Клаузиус сформулировал в качестве тепловой аксиомы Теплота не может сама собой переходить от тела холодного к телу горячему . Значение этого положения оказалось настолько важным, что его стали рассматривать как одну из формулировок второго начала термодинамики. Л. Больцман писал Наряду с общим принципом (законом сохранения и превра]цения энергии. — О. С.) механическая теория тепла установила второй, малоутешительным образом ограничивающий первый, так называемый второй закон механической теории тепла. Это положение формулируется следующим образом работа может без всяких ограничений превращаться в теплоту обратное превращение тепла в работу или совсем невозможно, или возможно лишь отчасти. Если и в этой формулировке второй принцип является неприятным дополнением к первому, то благодаря своим последствиям он становится гораздо фатальнее .  [c.79]

В цикле рассмотренной выше идеализированной компрессионно холоди.чь-ной машины влажного сжатия дросселирование, иоказанное линией de на фиг. 18, является необратимым процессом и должно, следовательно, уменьшить холодильный коэффициент такого цикла по сравнению с холодильным коэффициентом обратимого цикла, работающего в том же интервале температур. В цикле холодильной машины тепло поглош,аемое в испарителе при постоянной температуре равно  [c.25]

Проявленная пластинка ополаскивается водой и погружается на 10 мин в раствор закрепителя, фиксирующего полученное изображение. В процессе фиксирования протекает реакция растворения галогенида серебра, не подвергшегося действию света и оставшегося не восстановленным. После фиксирования пластинка в течение 10—15 мин должна быть тщательно промыта проточной водой. При этом из эмульсионного слоя удаляются продукты реакции и все следы тиосульфата натрия, входящего в состав закрепителя. При недостаточной промывке остатки тиосульфата в желатине начнут кристаллизоваться, что приведет к необратимым изменениям в эмульсионном слое и гибели снимка. Промытая фотопластинка высушивается при комнатной температуре или в токе теплого воздуха. При этом следует обратить внимание на то, чтобы в помещении для сушки не было пыли, так как пылинки, попавшие на фотометрируемый участок линии, усложняют процесс измерения и могут привести к существенным ошибкам в оценке почернений.  [c.12]

В тепловых двигателях теплота, отдаваемая более нагретыми телами, превращается в работу не полностью некоторая доля этой теплоты передается рабочим телом менее нагретым телам. Переход теплоты от более нагретых тел к менее нагретым в результате действия теплового двигателя и обусловленные этим переходом изменения состояния участвующих в процессе тел по сравнению с начальным и представляют собой те компенсационные эффекты, которыми согласно второму началу термодинамики обязательно сопровождается любой как обратимый, так и необратимый круговые процессы превращения теплоты в работу. Этот относящийся к круговым процессам результат выражают еще следующим образом превращение теплоты в работу всегда сопровождается компенсирующим переходом некоторого количества теплоты от более нагретого к менее нагретому телу. Подчеркнем, что сказанное относится к круговым процессам среди незамкнутых процессов с одним источником теплоты могут быть такие, в которых сообщенная телу теплота превращается в работу полностью. oшлe [ я в связи с этим на следующее высказывание Зоммерфельда .. . Планк приводит сам собой напрашивающийся пример полного превращения тепла в работу, а именно изотермическое расширение идеального газа с подведением тепла от источника с высокой температурой при полном использовании давления газа для совершения работы. В этом процессе энергия не будет обесцениваться , а наоборот, будет становиться ценнее (тепло полностью превращается в работу) .  [c.47]


Диагональные элементы матрицы кинетических коэффициентов L(aII, Lii характеризуют влияние силы У, на поток /, неди-агональные элементы L, 1фк) описывают влияние силы У на поток Отличие недиагональных элементов матрицы кинетических коэффициентов L, от нуля обусловлено взаимодействием различных необратимых процессов например, взаимосвязь процессов переноса массы (диффузия) и тепла (теплопроводность)  [c.192]

Тепловая диссипация кипетической энергии связана с необратимостью пли ненолитропичностью процессов в газе, а именно при сжатии, когда температура газа выше температуры жидкости газ рассеивает в жидкость тепла больше, чем возврагцает от жидкости при расширении, когда его температура ниже температуры жидкости.  [c.119]

Однако, как будет вндно из дальнейшего, действительные двигатели не работают по циклу Карно, так как невозможно из конструктивных соображений осу-шествить в полной мере подвод и отвод тепла при t = onst, и термический к. п. д. для действительно осуществляемых б иклов значительно ниже. Кроме того, в реальных двигателях существует ряд потерь, происходящих как вследствие конструктивных особенностей машины, так и вследствие необратимости отдельных процессов цикла. Поэтому в действительности количество механической энергии, получаемой на валу двигателя, за счет каждой единицы тепла, получаемой из верхнего источника, оказывается значительно ниже, и для napoEibix установок оно в благоприятных условиях достигает 40%, а для двигателей внутреннего сгорания 42% от тепла, полученного рабочим телом в верхнем источнике.  [c.98]


Смотреть страницы где упоминается термин Тепло необратимое : [c.58]    [c.155]    [c.507]    [c.35]    [c.229]    [c.39]    [c.13]    [c.256]    [c.10]    [c.16]    [c.35]    [c.83]    [c.433]    [c.126]    [c.287]    [c.55]   
Механика сплошной среды Часть2 Общие законы кинематики и динамики (2002) -- [ c.324 ]



ПОИСК



Влияние необратимости на работоспособность термодинамических систем Эксергетические потери и эксергетический Эксергетический анализ работы тепловых машин

Необратимость

Необратимость переноса тепла

Необратимость тепловых процессо

Необратимые реакции с двумя источниками тепла

Применение методов термодинамики необратимых процессов к исследованию тепло- и массопереноса в пограничном слое

Работа 1 — 366 — Вычисление графическое 1 —367 2 — 41 — Потери вследствие необратимости 2 — 42 Эквивалент тепловой

Работа — Выражение графическое аналитическое 41 — Потери вследствие необратимости 42 — Эквивалент тепловой

ТЕПЛО- И МАССОПЕРЕНОС ПРИ ФАЗОВЫХ ПРЕВРАЩЕНИЯХ де Гроот. О термодинамике необратимого тепло- и массообмена

Тепло . Необратимые процессы



© 2025 Mash-xxl.info Реклама на сайте