Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Растяжение упругого слоя

При перемещении резца вследствие трения между задней гранью инструмента и вновь образуемой поверхностью, верхние слои последней подвергаются пластической деформации растяжения, а слои металла, лежащие ниже, растягиваются упруго. После прохождения резца упруго растянутые внутренние слои стремятся вернуться в прежнее положение, но этому препятствуют наружные пластически деформированные слои. В результате верхние слои оказываются сжатыми, а внутренние — частично растянутыми.  [c.56]


Гибка - операция, изменяющая кривизну заготовки практически без изменения ее линейных размеров (рис. 3.74, а). В процессе гибки пластическая деформация сосредоточивается на узком участке, контактирующем с пуансоном, в то время как участки, образующие полки детали, деформируются упруго. В зоне пластических деформаций наружные слои растягиваются, а внутренние (обращенные к пуансону) сжимаются. У середины заготовки (по толщине) находятся слои, деформация которых равна нулю. Из сказанного следует, что с достаточной степенью точности размеры заготовки для детали, получаемой гибкой, можно определять по условию равенства длин заготовки и детали по средней линии. Деформация растяжения наружного слоя и сжатия внутреннего увеличивается с уменьшением радиуса скругления рабочего торца пуансона. Деформация растяжения наружного слоя не беспредельна, и при определенной ее величине может начаться разрушение заготовки с образованием трещин, идущих от наружной поверхности в толщу заготовки. Это обстоятельство ограничивает минимальные радиусы r ia, исключающие разрушение заготовки. В зависимости от пластичности материала заготовки Гти, = (0,1. .. 2) 5.  [c.131]

Трехслойная стенка с жестким на растяжение средним слоем. Если средний слой имеет сравнительно большой модуль упругости ср (см. рис. 3, в), его необходимо учитывать в расчетах. Выражения жесткостей и расстояние от наружной поверхности до нейтрального слоя запишем так  [c.153]

Рассмотрим взаимодействие подкрепленной цилиндрической оболочки и соосного кругового кольца (бандажа), контактирующих между собой через упругий слой (прокладку). В свою очередь, опорное кольцо нагружено посредством кругового упругого основания (ложемента). Оболочка испытывает поперечное нагружение в виде локальных радиальных рг(ф), касательных /г(ф) сил и изгибающих моментов П1г(ф), приложенных к подкрепляющим шпангоутам (рис. 4.29). Предполагаем, что коэффициенты податливости прокладки и кругового основания ложемента при растяжении и сжатии С2 в общем случае различны. Если упругий слой не скреплен с контактирующими элементами, то коэффициент податливости при растяжении принимаем равным нулю ( i = 0).  [c.154]

Эти способы упрочнения основаны на получении поверхностных сжимающих напряжений за счет неоднородной упруго-пластической де< юрмации (растяжения поверхностных слоев детали) в зоне контакта детали и цилиндрического или сферического инструмента (ролика, шарика, дорна и т. п.) или рабочего тела (например, дроби). Деформирование поверхностных слоев облегчается при скольжении или качении прижатого инструмента по поверхности детали, так как за счет сил трения увеличивается интенсивность напряжений в зоне контакта. Для повышения стойкости инструмента его изготовляют из более прочного материала, чем обрабатываемая деталь. Эффективным оказывается использование материалов с высоким модулем упругости. Дробь изготовляют и из менее прочного материала (чугун, стекло, неметаллы и др.), так как в момент соударения она работает в условиях сжатия.  [c.645]


Основные неизвестные, от знания которых зависит решение задачи о равновесии упругого слоя, т. е. функции (1.10) для задачи растяжения и (1.11) для задачи изгиба, должны быть определены из краевых условий.  [c.153]

В направлении сил трения происходит пластическое растяжение наружных слоев. При этом в нижележащих слоях металл растягивается упруго. По окончании процесса трения упруго растянутые слои, стремясь вернуться в исходное состояние, встречают препятствие со стороны внешних, пластически растянутых слоев. Вследствие этого напряжения полностью не исчезают, а только снижаются, что влечет за собой  [c.81]

Решение. Однородное растяжение означает деформацию и = где постоянная v > 0. Для исследования устойчивости полагаем и = yz Ьи (х, г), где 6и — малое возмущение, удовлетворяющее граничным условиям 6и = О при 2 = й/2 (плоскость X, у выбрана посередине слоя). С точностью до членов второго порядка, полная упругая энергия возмущения (отнесенная к единице длины вдоль оси у)  [c.234]

Совершенно так же, как импульс сжатия, распространяется в стержне импульс растяжения. Для того чтобы такой импульс возник, на крайнее сечение стержня должна действовать кратковременная сила, направленная не к стержню, а от стержня, например, на левый конец стержня должна действовать сила, направленная влево. Под действием этой силы частицы стержня, расположенные у левого его конца, начнут двигаться влево, и в крайнем левом слое стержня возникнет деформация растяжения. Обусловленные ею упругие силы остановят частицы, расположенные у левого конца стержня и движущиеся влево, и заставят двигаться влево частицы, расположенные в следующем слое стержня возникнет деформация растяжения во втором слое стержня.  [c.489]

Рассмотрим физическую картину возникновения гидравлического удара. Пусть в прямой цилиндрической трубе, питающейся из большого резервуара с постоянным уровнем (рис. 100), существует установившийся режим со скоростью Vo, Допустим, что в некоторый момент затвор на конце трубы мгновенно закрывается. Тогда слои жидкости перед затвором окажутся мгновенно остановленными и благодаря инерции массы жидкости в трубе будут подвергнуты сжатию, а значит давление в них резко повысится. Принимая во внимание упругость жидкости и стенок трубы, можно представить, что наряду с уплотнением этих слоев произойдет растяжение стенок трубы и повышение в них напряжений. Тогда по истечении некоторого малого промежутка времени после закрытия затвора участок трубы Д/ перед ним окажется в состоя-  [c.208]

Выявленная последовательность сигналов АЭ в цикле нагружения, а также учет эффекта ротационной пластической деформации приводят к рассмотрению формирования усталостных бороздок не в полуцикле восходящей ветви нагрузки, а в полуцикле нисходящей ветви нагрузки. Накопленная энергия упругой деформации в большей части объема материала при максимальном раскрытии берегов трещины стремится закрыть трещину после перехода к полуциклу снижения нагрузки. Этому препятствует зона пластической деформации, размеры которой существенно возрастают в полуцикле растяжения (восходящая ветвь нагружения). Действие сжимающих сил при разгрузке образца стремится нарушить устойчивость слоя материала перед вершиной трещины в районе зоны пластической деформации, и это приводит к возникновению дислокационной трещины (см. рис. 3.26), а далее и к созданию свободной поверхности. Происходит отслаивание пластически деформированной зоны с наиболее интенсивным наклепом материала от остальной части зоны. При этом в случае существенного возрастания объема зоны в связи с возрастанием скорости роста усталостной трещины отслаивание характеризуется разрушением материала не по одной, а по нескольким дислокационным трещинам, что характеризуется формированием более мелких бороздок на фоне крупной усталостной бороздки.  [c.168]

На установке можно испытывать образцы при изгибе, растяжении и сжатии. Для измерения силы удара в одной из опор устанавливают пьезокварцевый датчик. Прогиб образца в центральной части измеряют с помощью специальной приставки, состоящей из фотоэлемента, лампы освещения и запирающей иглы. Действительные напряжения на поверхности образца в этом случае остаются неизвестными, так как трудно определить потери энергии однократного удара на местные смятия и контактные напряжения соударяющихся деталей из-за неучитываемых неупругих деформаций, возникающих в материале в процессе повторно-переменного нагружения. Поэтому в работе [162] определена общая деформация поверхностного слоя материала образца, и эта общая деформация разделена на упругую и неупругую составляющие.  [c.259]


Изучение картины полос в срезе этой модели показывает, что основную нагрузку при растяжении двухслойной пластины с различными модулями упругости слоев воспринимает более жесткий слой, напряжения в котором распределяются неравномерно — наиболее напряженными являются точки по контуру волнистой поверхности в наименьщем сечении среза растягиваемой модели. Распределение напряжений в слое с модулем упругости < п равномерное, о чем свидетельствует одинаковая освещенность нижней части среза. По измеренным разностям хода а в точках этих сечений, зная коэффициент оптической чувствительности слоев i и Сг, можно подсчитать значения разностей главных напряжений (oi—аа) в этих точках. Распределение напряжений (oi—(12)00, где [c.33]

Сжатие и растяжение упругой полосы ). Рассматривается упругий слой из несжимаемого материала, в начальном состоянии заполняющий область а <1, lasj /i плоскости XOY и неограниченно простирающийся по оси Z. По граням  [c.695]

В. М. Александров и А. С. Соловьев [3] задачу включения для бесконечной полосы решают применительно к проблеме тензомет-рировайия. Между поверхностью полосы и накладки (тензодатчи-ка) имеется упругий слой клея малой толщины. Предварительно с позиции плоской теории упругости рассматривается вспомогательная задача о растяжении двухслойной пластины (тензодатчик и клеевая прослойка) произвольной самоуравновешенной касательной нагрузкой, приложенной к одной из ее граней. Затем из уело ВИЙ полного сцепления клея с полосой строится сингулярное интегральное уравнение для определения касательных усилий взаимодействия на границе полоса—клей. Это уравнение регуляризует-ся и решается методом последовательных приближений.  [c.126]

Узкие и длинные детали с большим радиусом (л > 15s) обычной гибкой в штампах получить нельзя. Объясняется это тем, что при гибке деталей с малой кривизной поперечное сечение изделия приобретает главным образом упругие деформации, вследствие чего после снятия нагрузки заготовка отпружинивает и распрямляется. Поэтому штамповку подобных деталей производят методом гибки с растяжением. Принцип этого метода заключается в том, что к концам подлежащей деформированию заготовки прилагают растягивающие силы и последующую гибку осуществляют в растянутом состоянии. Это приводит к тому, что при изгибе с растяжением нейтральный слой проходит не в плоскости центра тяжести сечения, а значительно смещается к центру кривизны, причем, чем больше растягивающее (осевое) усилие, тем на большее расстояние смещается нейтральный слой. В некоторых случаях при значительном осевом усилии нейтральная линия может совпадать с внутренним краем изогнутой заготовки или может быть вообще выведена за пределы сечения, и тогда нормальные напряжения в сечении будут одного знака — растягивающие. Рис. 63 наглядно поясняет вышеизложенное.  [c.139]

Остаточные напряжения при резании конструкционных материалов образуются в результате неравномерности пластической деформации и значительного нагрева поверхностных слоев. Кроме того, могут происходить и структурные превращения. Механизм образования остаточных напряжений в первом приближении следующий [37]. Сила F вызывает пластическое растяжение верхних слоев, а слои, лежащие ниже, получают упругую деформацию растяжения. После прохода резца упруго-растянутые лoiI стремятся сжаться, но этому препятствуют верхние пластическ1< деформированные слои. В результате внутренние слои останутся частично растянутыми и в верхнем слое возникнут остаточные напряжения сжатия. Под действием второго фактора — нагрева теплом <72 (см. рис. 53) верхние слои стремятся удлиниться, но этому оказывают сопротивление более холодные нижние слои и в поверхностном слое появляются напряжения сжатия. При достаточно интенсивном нагреве эти напряжения могут превзойти  [c.73]

В процессе резания та часть срезаемого слоя, которая подминается под заднюю поверхность режущего клина благодаря упругой деформации материала и наличию радиуса округления режущей кромки инструменту упруго деформирует, а затем упруго восстанавливается на величину Яу р (рис. 1). Сжатие обрабатываемого материала перед режущей кромкой сменяется растяжением поверхностного слоя обра6от 1нной поверхности позади нее и является причиной образования напряжений растяжения в поверхностном слое. В тех случаях, когда возникающие за режущей кромкой напряжения растяжения превьшхают предел прочности материала (например, при резании органического стекла), в поверхностном слое обработанной поверхности образуются микротрещины.  [c.11]

Часть энергии вспышки затрачивается на работу упругого растяжения стенок цилиндра, шпилек крепления цилиндра и картера, на сообщение ускорения массе этих деталей (в пределах упругих деформаций). Другая часть энергии расходуется на деформацию сжатия поршня и шатуна изгиба поршневого пальца, изгиба и кручения коленчатого вала, вытеснение масляного слоя в зазорах между сопрягающимися деталями.- Значительная доля энергии тратится на сообщение ускорений поступательно-возвратно движущимся и вращающимся деталям. Большая часть этой энергии обратима и возвращается на последующих этапах цикла затраты же на работу вязкого сдвига, вытеснение маеляного слоя в зазорах, а также гистерезис при упругой деформации металла являются невозвратимыми.  [c.149]

Эффективен наклеп в напряженном состоянии, представляющий собой сочетание упрочнения перегрузкой с наклепом. При этом способе деталь нагружают нагрз зкой того же направления, что н рабочая, вызывая в материале упругие пли упруго-пластические деформации. Поверхностные,слои металла, подвергающиеся действию наиболее высоких напряжений растяжения (случай изгиба) или сдвига (случай кручения), подвергают наклепу (например, дробеструйной обработкой). После снятия нагрузки в поверхностном слое возникают остаточные напряжения сжатия, гораздо более высокие, чем при действии только перенапряжения или только наклепа.  [c.320]


После охлаждения до исходной температуры напряжения, вощносающие в результате разности температур, исчезают. Пластически же растянутые слои сжимаются действием упругих сил основного материала, В этих слоях возникают напряжения сжатия, а на противоположной торонб— уравновешивающие напряжения растяжения (рис. 276, в). Брус становится целесообразно иреднапряженным. При действии силы остаточные напряжения вычитаются из рабочих и результирующие напряжения умень- щаются (рис. 276, гид). .  [c.401]

При упрочнении диск подвергают нагреву с периферии (рис. 276, л). Температуру нагрева и градиент температуры по радиусу диска выбирают так, чтобы вызвать во внутренних холодных слоях остаточные деформации растяжения. После охлаждения растянутые слои сжимаются упругим действием наружных слоев во внутренних слоях возникают преднапряже-ния сжатия, в наружных — растяжения (рис. 276,. и). При действии рабочей нагрузки (рис. 276, л) остаточные и рабочие напряжения алгебраически складываются результирующие напряжения (рис. 276, о) имеют меньшую величину II распределены более благоприятно, че.м в случае диска, не подвергнутого упрочнению.  [c.402]

В технике высоких давлений, кроме посадки, применяется так называемое автофретирование, которое заключается в предварительной нагрузке цилиндра внутренним давлением, большим рабочего, с таким расчетом, чтобы во внутренних слоях цилиндра возникали пластические деформации. После снятия давления во внешних слоях цилиндра сохраняются упругие напряжения растяжения, а во внутренних слоях возникают напряжения сжатия (рис. 321).  [c.286]

Для получения упрощенных зависимостей, описывающих усредненные упругие характеристики двухмерноарми-рованного слоя, использованы подходы, изложенные в работах [4, 18, 49]. Сначала укажем на основные допущения, принятые при приближенном описании деформативных характеристик однонаправленного композиционного материала [49] 1 — компоненты армированного пластика (волокно и матрица) изотропны и линейно упруги и работают совместно на всех этапах деформирования 2 — единичный объем материала находится в условиях плоского напряженного состояния 3 — пренебрегается напряжениями, перпендикулярными к волокнам при действии нормальной нагрузки вдоль волокон 4 — деформации вдоль нагрузки при поперечном (к направлению волокон) растяжении-сжатии пропорциональны в каждой компоненте ее объемному содержанию в материале 5 — напряжения неизменны в объеме отдельных компонентов.  [c.57]

УЗМД позволяет контролировать упругую анизотропию поверхностных слоев чугунов и сталей. Ее высокая точность ( 15-10" ) достигается применением метода синхрокольца (см. рис. 9.5), позволяющего улавливать изменения скорости распространения поверхностных волн, соответствующие усилиям растяжения или сжатия с точностью 0,2 Н.  [c.418]

Однонаправленный слой характеризуется экспериментальными пределами прочности при растяжении и сжатии в продольном (0°) и поперечном (90°) направлениях. Для установления В-кри-териев (вероятность церазрушения 90% при доверительном уровне 95%) проводят статистический анализ (см. руководство [11, разделы 4.1.5.3). По диаграммам деформирования однонаправленного материала при продольном нагружении, линейным до разрушения материала, устанавливают уровень максимально допустимых напряжений, которые принимают равными /3 разрушающих. Если по диаграмме деформирования предел пропорциональности оказывается меньшим, чем предела прочности, в качестве уровня максимально допустимых напряжений принимают предел пропорциональности. Исключение составляют случаи, когда образование неупругих деформаций и соответствующее снижение модуля упругости при нагружении выше предела пропорциональности являются допустимыми. В большинстве случаев максимально  [c.78]

Случай двухслойной оболочки с кольцевыми трещинами в слое исследовал Джоунс [135], который рассмотрел также цилиндрическую оболочку, состоящую из произвольного набора слоев ортотропного композиционного материала с различными модулями упругости при растяжении и сжатии (Джоунс, [1361). Ставски  [c.234]

Хотя прочность при продольном растяжении зависит, главным образом, от класса, к которому принадлежит композитная система (например, псевдопервому или третьему), важную роль играет и другой фактор, а именно, способность волокна за счет собственной пластичности компенсировать образование хрупкого п ро-дукта реакции. Такой продукт определяет разрушение лишь в случае хрупких (упругих) волокон. Примером такой системы, относящейся к третьему классу, является система Ti—В, в которой образуется реакционный слой постоянной толщины с малой деформацией разрушения. Трещины в нем образуются раньше, чем в волокне, а дальнейшее влияние реакционного слоя зависит от его толщины. К этому классу относится и титан, армированный борными волокнами или такими же волокнами с покрытием карбидом кремния, хотя в последнем случае зависимость толщины продукта реакции от условий изготовления может привести к изменению деформации разрушения. В типичной системе псевдопервого класса А1—В продукт реакции, обладающий малой деформацией разрушения, образуется на отдельных участках. Его толщи-  [c.182]

Вообще говоря, поле напряжений у вершины трещины в анизотропной пластине включает составляющие Ki п Ки- Однако в настоящее время испытания проводят, как правило, при ориентациях, исключающих одну из этих составляющих это прежде всего относится к ортотропным материалам, которые ориентируют таким образом, чтобы нагрузка была параллельна одной главной оси, а трещина—другой. В таких условиях значительная анизотропия, свойственная некоторым композитам, может привести к явлениям, не наблюдающимся у обычных металлов. Так, при растяжении образцов с направленным расположением упрочнителя часто наблюдают продольное расщепление (рис, 8). Его может и не быть, если поперечная и сдвиговая прочности достаточно высоки [5] тем не менее, этот возможный тип разрушения материалов необходимо учитывать. Кроме того, приложение одноосных растягивающих напряжений к образцу с поперечным расположением слоев приводит к появлению локальных межслоевых напряжений т,2у и нормальных напряжений Ozzt перпендикулярных плоскости образца [35], что показано на рис. 9. Ориентация и значения величин Он и Тгу зависят от порядка укладки слоев, упругих постоянных каждого слоя и величины продольной деформации. Значительные межслоевые растягивающие а г. и сдвиговые х у напряжения могут привести к расслаиванию [11, 35], которое опять-таки является особенностью анизотропных слоистых материалов. Последний пример относится к поведению материала с поверхностными трещинами. В изотропных материалах трещина распространяется, как правило, в своей исходной плоскости (рис. 10, а). У слоистых материалов прочность связи между слоями обычно мала, и они обнаруживают тенденцию к расслаиванию по глубинным плоскостям (рис. 10,6). Три этих простых примера приведены здесь, чтобы проиллюстрировать некоторые из различий между гомогенными изотропными материала-  [c.276]

На рис. 16, а [14] показаны значения прочности и модуля упругости слоистого композиционного материала бор — алюминий различных схем армирования. Для сравнения на том же графике приведены соответствующие характеристики алюминиевого сплава 2219. Как видно, в любой точке композиционный материал по свойствам превосходит традиционный сплав. Прочность при растяжении и модуль упругости одноосноармированного слоистого материала, определенные при испытаниях в осевом (продольном) и трансверсальном (поперечном) направлениях, представлены точками А VI В соответственно. Точками С VI О представлены свойства композиционного материала со схемами армирования 0° (50), 45° (50), 90° (0) и 0° (25), 45° (50), 90° (25) соответственно (в скобках приведено количество слоев в %, имеющих указанную ориентацию). Композициоивык материал последней из приведен-  [c.59]


По-видимому, при этом волокна становятся гладкими и их адгезия к матрице значительно ослабляется по сравнению с высокопрочными волокнами. Сопротивление сдвигу между слоями уменьшается, в связи с чем высокая теоретическая эффективность не реализуется из-за снижения способности передавать нагрузку от слоя к слою. Высокопрочные углеродные волокна практически предпочтительны для высокожестких конструкций, поскольку они воспринимают до 100% общей нагрузки. Упругие волокна в зависимости от используемой матрицы зачастую могут воспринимать только 40—70% от предельно допустимой нагрузки. Кроме того, несмотря на высокую жесткость графита, его работа на сжатие обычно несколько ниже, чем на растяжение.  [c.84]


Смотреть страницы где упоминается термин Растяжение упругого слоя : [c.250]    [c.489]    [c.106]    [c.219]    [c.94]    [c.108]    [c.35]    [c.154]    [c.300]    [c.155]    [c.159]    [c.280]    [c.656]    [c.345]    [c.88]   
Пространственные задачи теории упругости (1955) -- [ c.146 ]



ПОИСК



Упругие растяжении



© 2025 Mash-xxl.info Реклама на сайте