Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обработка методом на токарных станках

На рис. 6.14 показаны эскизы технологического процесса восстановления корпусов вентилей Dy = 10 и 20 мм без технологической пробки. Обработка ведется на токарном станке. Во все методах ремонта корпусов вентилей при обработке в качестве установочной или направляющей базы используется отверстие под сальник в среднем патрубке. На рис. 6.14, а по этой поверхности устанавливается кондукторная втулка для направления размерного режущего инструмента (сверла, зенкера) и поджимная оправка для приварки седла корпуса. Эта поверхность является установочной на первой операции обработки. Корпус за-  [c.284]


Обработка конусов. Известны три основных метода обработки конусов на токарных станках метод смещения задней бабки метод поворота поперечных салазок суппорта метод обработки с помощью конусной линейки. Применяют также обработку конусов проходным резцом на длине конусной части г 10 15 мм при невысоких требованиях к точности и шероховатости поверхности конуса. Схема обработки конусов по методу смещения задней бабки изображена на рис. 42. Смещение задней бабки вычисляют по формуле  [c.117]

Известны три основных метода обработки конусов на токарных станках  [c.79]

Условия, от которых зависит точность обработки деталей на токарных станках. Несмотря на высокие качества современных токарных станков, совершенство методов обработки, точность применяемых измерительных инструментов и наличие других благоприятных условий, влияющих на точность обработки детали, достигнуть совершенства точных размеров и правильной формы ее невозможно.  [c.117]

Этой проверкой обычно заменяют трудоемкую проверку плоскостности методом обработки торца на токарном станке и др.  [c.44]

Приспособление своим конусным хвостовиком или через переходную конусную втулку закрепляют в конусном отверстии шпинделя. Индикатор устанавливают на поперечные салазки и подводят к одному из концов линейки приспособления. При медленном вращении шпинделя (от руки) замечают максимальное отклонение стрелки. С помощью винтов устраняют биение образующей линейки. Этим устанавливают ее перпендикулярно оси вращения шпинделя с точностью 5 мкм и создают базу для проверки расположения различных узлов станка. Затем поперечные салазки перемещают к противоположному концу приспособления и засекают максимальное отклонение стрелки индикатора при медленном вращении шпинделя (от руки). Разность показаний индикатора на обоих концах линейки соответствует величине перпендикулярности направления движения салазок суппорта к оси шпинделя на длине линейки, что характеризует плоскостность проточки торца на диаметре, в два раза превышающем длину линейки. Такая проверка обычно заменяет трудоемкую проверку плоскости методом обработки торца на токарном станке и др  [c.44]

Червяки. Червяки (рис. 8.26) чаще всего вьшолняют вместе с валом. Заготовкой служит круглый прокат, поковка или штамповка. При конструировании червяка желательно обеспечивать свободный выход инструмента для нарезания витков (рис. 8.26, а, б). Такое исполнение не зависит от выбора метода обработки витков (фрезерование или обработка резцом на токарном станке) и удобно при шлифовании. При относительно малом диаметре червяка для повышения жесткости его вьшолняют по типу рис. 8.26, в. При этом по обеим сторонам полной нарезки L предусматривают сбег резьбы для выхода инструмента. Размер I зависит от размеров инструмента. Если не известны размеры инструмента или нет конструктивных условий, ограничивающих этот размер, на рабочем чертеже в технических условиях можно записать размер сбега нарезки / назначить по технологическим условиям .  [c.164]


В качестве примера рассмотрим процесс получения управляющей программы для станков с ЧПУ при обработке деталей на токарных станках, Процессором являются программы синтеза операционной технологии. Исходная информация для проектирования чертеж детали, метод получения заготовки, тип оборудования. Синтез выполняется на основе обобщенного технологического процесса-аналога, Результат синтеза — модель объекта в виде совокупности контуров операционных эскизов, получаемых на отдельных последовательно выполняемых операциях обработки детали (см. рис. 8.3, а, б). Постпроцессор включает алгоритмы и программы, которые для каждой операции решают задачи определения количества требуемых инструментов и последовательности их работы расчета геометрии режущей части назначения режимов резания определения траекторий перемещений инструмен-  [c.223]

Методы проверки этих параметров могут быть хорошо показаны на примере методов проверки токарного станка по ГОСТ 42-40, который предусматривает также проверку станка по точности обработки детали. Ниже для примера приводим выдержку характерных технических условий и методов их проверки.  [c.625]

Значительно проще выполнить подналадку станков токарной группы на чистовых операциях — масса подвижных частей, связанных с резцедержателем, относительно невелика, а требования к точности обработки ниже, чем при шлифовании. Разработано несколько методов подналадки токарных станков. Один из них состоит в том, что при подналадке автоматически изменяется длина упора, ограничивающего поперечное перемещение суппорта. Регулирование длины упора достигается с помощью храпового механизма и винта точной подачи. Для поворота ведущей собачки храпового колеса используют пневмо-или гидроцилиндры, срабатывающие по командам контрольного устройства. Такой способ подналадки в разных конструктивных вариантах нашел применение на ряде заводов.  [c.132]

Основные методы обработки фасонных поверхностей на токарных станках  [c.317]

Осевые температурные перемещения шпинделя станка могут вызывать погрешности обработки, например при работе на токарном станке по продольным упорам. Очевидно, что в прецизионных станках в силу непрерывного изменения указанных перемещений необходима их автоматическая компенсация. Для расчета соответствующих САР необходимо располагать методами аналитического определения величины температурных перемещений, определяющих точность обработки детали, в частности осевых. Ниже приводится одна из разработанных авторами методик расчета.  [c.353]

Детали, обрабатываемые на токарных станках, можно разбить на две основные группы детали, обрабатываемые в центрах, и детали, обрабатываемые в патроне. Для каждой группы технологические маршруты строятся в зависимости от габаритов и конфигурации деталей, марки материала, требований к термической обработке и испытаниям и от вида заготовок. Так, в массовом производстве на токарных работах преобладают многошпиндельные и многорезцовые автоматы, станки с автоматическим циклом работы, автоматические методы контроля в серийном большое применение находят универсальное оборудование и универсальные методы контроля.  [c.290]

Если исследуемый металл допускает обработку резанием, то образец может быть изготовлен обтачиванием либо на токарном станке, либо, если нет необходимости соблюдать большую точность, вручную напильником. Поверхностный слой образца, изготовленного таким способом, находится в наклепанном состоянии, что приводит к расширению линий на рентгенограмме и, следовательно, к затруднению при промере и расчете и к неверным выводам. Во избежание этого поверхностный (наклепанный) слой должен быть удален стравливанием химическим или электролитическим методом.  [c.6]

Рассмотрим утверждения, образующие правила выбора средств обработки (станка, инструмента) 1) если необходимо обработать наружную цилиндрическую поверхность и получить шестой класс чистоты, то может быть применена обработка методом чистового точения на токарном станке 2) если необходимо обработать внутренние шлицы и получить поверхность пятого класса чистоты, то может быть применено протягивание, осуществляемое протяжкой и т. п.  [c.9]


Технология обработки и оборудование. Нарезание ниток червяка производится черновое — на резьбофрезерном станке, чистовое — на токарном. Применяется также скоростной метод нарезания на токарном станке быстровращающейся (до 1500 об/мин) резцовой головкой (фиг. 59), расположенной на каретке  [c.530]

Статистическая обработка результатов испытаний имеет еле дующие цели построить статистическую модель процесса обработки на токарных станках-автоматах и найти оптимальный метод статистического управления этим процессом.  [c.514]

Схемы выполнения основных операций. Обтачивание одним резцом — основной метод обработки на токарных станках. Вылет резца принимают не более 1,0—1,5 высоты его стержня соответственно для резцов с пластинками из твердого сплава и быстрорежущей стали. Вершину резца устанавливают на высоте центров или несколько выше (черновое обтачивание) или ниже (чистовое обтачивание). При Л > 50 мм смещение проводят на величину А < 0,01 Л (где R — радиус обрабатываемой заготовки). При чистовой обработке такая установка предохраняет от возможного брака вследствие деформации резца. Положение вершины резца проверяют по риске, нанесенной на пиноли задней бабки, по центру или с помощью специальных шаблонов. Наладку инструмента на размер по диаметру ведут методом пробных ходов. Партию заготовок обрабатывают методом автоматического получения размеров без смещения резца в поперечном направлении по лимбу, с помощью индикаторных и жестких упоров.  [c.228]

Обработка на токарных станках. При токарной обработке режимы в значительной степени определяются свойствами режущего инструмента. Даже сверхтвердый режущий инструмент из сплава марки Р-10 сильно изнашивается, и срок его службы очень мал. Меньше всего изнашивается алмазный инструмент, полученный методом спекания, и его применение не приводит к образованию ворса на поверхности материала после обработки [62].  [c.116]

Сверление является одним из распространенных методов обработки на токарных станках и осуществляется для предварительной обработки отверстий. Предварительно обработать резанием отверстие в сплошном материале можно только с помощью с в е р-л а. В зависимости от конструкции и назначения различают сверла спиральные, перовые, для глубокого сверления, центровочные, эжекторные и др. Наибольшее распространение при токарной обработке получили спиральные сверла. Конструкция и геометрия сверл, а также других инструментов для обработки отверстий и резьб рассмотрены в гл. 2 и 6.  [c.142]

Общие сведения. Отделочная обработка на токарных станках производится в основном в тех случаях, когда необходимо уменьшить шероховатость обработанной поверхности при невысоких требованиях к точности. Это достигается тонкой пластической деформацией поверхности детали, в результате сглаживаются гребешки микронеровностей и образуется наклепанный слой металла глубиной до 0,02 мм, который обеспечивает повышение твердости поверхности детали примерно на 30 %. Тонкая пластическая деформация поверхностного слоя металла может быть получена обкатыванием вращающимися роликами или шариками, а также выглаживанием инструментом из твердых или сверхтвердых материалов. Для достижения высокой точности размеров детали и снижения шероховатости поверхности применяется метод притирки (доводки).  [c.177]

Нарезание резьбы резцами и резьбовыми гребенками. Наружную и внутреннюю резьбы можно обработать на токарных станках. Это малопроизводительный процесс, так как обработка осуществляется за несколько рабочих ходов и требует высокой квалификации рабочего. Достоинством метода является универсальность оборудования, инструмента и возможность получить резьбу высокой точности. На токарных станках нарезают точные резьбы на ответственных деталях, а также нестандартные резьбы и резьбы большого диаметра. Для повышения точности резьбы осуществляют как черновые, так и чистовые рабочие ходы разными резцами. Различают два способа нарезания треугольной резьбы 1) радиальное движение подачи 2) движение подачи вдоль одной из сторон профиля.  [c.47]

К недостаткам нарезания резьбы на токарных станках относятся низкая производительность, уступающая другим методам нарезания резьбы, а также зависимость точности обработки среднего диаметра от квалификации рабочего.  [c.49]

Обработку плоских поверхностей можно производить различными методами на различных станках — строгальных, долбежных, фрезерных, протяжных, токарных, расточных, многоцелевых, шабровочных и др. (лезвийным инструментом) шлифовальных, полировальных, доводочных (абразивным инструментом).  [c.98]

Операционная технология обработки деталей общего машиностроительного применения на токарных станках с ЧПУ Метод. рекомендации/ВНИИ информации и технико-экономических исследований по машиностроению и робототехнике. М., 1985.- 87 с.  [c.292]

Резьбы нарезают, как правило, после шлифования наружных поверхностей. Шпиндель устанавливают в центры с помощью центровых пробок или центровых оправок основной метод обработки — нарезание резцом на токарном станке, а для неответственных резьб — фрезерование.  [c.130]

Конические поверхности не являются фасонными, но методы их обработки те же, что и методы обработки фасонных поверхностей. Для обработки конических поверхностей могут быть использованы токарные, револьверные, карусельные и шлифовальные станки. На токарных станках для получения наружной конической поверхности пользуются следующими методами  [c.171]


Обтачивание одним резцом - основной метод обработки на токарных станках. Вылет резца принимают не более 1,0 - 1,5 высоты его стержня соответственно для резцов с пластинками из твердого сплава и быстрорежущей стали. Верщину резца устанавливают на высоте центров или несколько выше (черновое обтачивание) или ниже (чистовое обтачивание).  [c.452]

Обкатывание роликами или шариками относится к статическим методам обработки. Такой вид упрочнения тел вращения может быть выполнен на токарных станках с простейшими приспособлениями [24]. Он предусмотрен стандартами как обязательный для осей и валов машин железнодорожного транспорта, применяется практически для всех гребных валов, эффективен для валов самых больших диаметров.  [c.36]

Экономическая точность обработки на токарных станках не превышает 3-го класса точности, хотя в отдельных случаях необходимо выполнять обработку по 2-му классу. Достижение высокой точности сопряжено с целым рядом трудностей, легко устранимых при других методах обработки поверхностей, например шлифовании, развертывании, протягивании и т. п. Для выполнения точных работ прежде всего нужны рабочие высокой квалификации. Установка резца на размер и промеры требуют большой затраты вспомогательного времени. Износ резца в процессе обработки не обеспечивает одинакового диаметра по всей длине вала. Высокая степень точности обычно сочетается с высокой чистотой, достижение которой требует тщательной доводки режущих кромок резца и соответствующего подбора режимов резания, к тому же нет уверенности в достижении требуемых результатов. Поэтому при обработке поверхностей вращения стальных и чугунных деталей с точностью выше 4-го класса ограничиваются получистовым точением под шлифование, а окончательная точность размеров обеспечивается шлифованием.  [c.104]

Рассмотрим обработку ступенчатого вала на токарном станке общего назначения. Эту работу можно организовать различными методами.  [c.106]

В зависимости от длины, диаметра и угла уклона, а также требований к чистоте и точности обрабатываемой поверхности применяют различные методы обработки конических поверхностей на токарных станках  [c.244]

Сложные фасонные поверхности состоят из криволинейных сферических поверхностей и их сочетаний. К основным методам обработки сложных фасонных поверхностей вращения на токарных станках относятся следующие.  [c.247]

При сравнении методов обработки изделий на токарно-винторезном и на автоматическом токарном станке можно установить, что на токарно-винторезном станке наладка и настройка занимают очень мало времени, но зато количество операций, выполняемых рабочим, несравненно больше, чем на автомате.  [c.14]

Обработка втулок по первому и третьему методам производится на токарных станках с закреплением заготовки (круглого проката) в трехкулачковом патроне.  [c.131]

Обработать на токарном станке (по методу пробных стружек) ступенчатый валик в размер (см. рис. 47) и произвести хронометраж обработки.  [c.155]

При обработке по методу обкатки осуществляется сочетание движения режущего инструмента и обрабатываемой заготовки. В этом случае необходимо обеспечить определенную скорость вращения фасонного режущего инструмента, длина средней окружности которого представляет длину обкатываемого участка, например, при точении. Наиболее широкое применение методы обкатки получили при обработке заготовок на токарных, фрезерных и долбежных станках.  [c.234]

Разделение процесса позволяет рационально использовать не только оборудование, но и особенности различных методов обработки. Например, черновой обработкой удаляется большая часть общего припуска, но при этом не требуется высокая точность стало быть, черновая обработка может выполняться на станках, позволяющих снимать стружки большего сечения. Окончательную же обработку, назначение которой сообщить детали заданную точность, можно производить на других станках и другими методами, обеспечивающими эту точность. Например, черновую и чистовую обработку цилиндрических поверхностей можно выполнить на токарных станках, а окончательную — на шлифовальном и в целом достичь наилучших результатов как по производительности, так и по точности.  [c.282]

Перед разработкой вопросов механизации и автоматизации обработки деталей на токарных станках в условиях мелкосерийного и серийного производства целесообразно перевести эти детали на групповую технологию, по методу лауреата Ленинской премии д-ра техн. наук С. П. Митрофанова, что, как показывает опыт, обеспечивает значительный экономический эффект.  [c.15]

Точность технологического процесса является наиболее сложным его свойством, на которое воздействуют многие факторы (рис. 7). Работы автора и других исследователей [9—16 19 21 24 25] показали, что решающее влияние на точность обработки деталей на токарных автоматах и полуавтоматах оказывают точность и жесткость станка и технологической оснастки, методы наладки станков и износ режущего инструмента. Эти вопросы подробно расмотрены в гл. IV—VI данной работы.  [c.26]

Опоры валов в корпусах можно оформлять по-разному начинающий конструктор шариковые подшипники установит непосредственно в корпусе — ему представляется, что это очень дешево, однако обходится очень дорого. Дело в том, что если расточник при обработке отверстий допустит провал отверстия, т. е. сделает его несколько больше, то исправление производить трудно. Одним из методов исправления может быть расточка такого отверстия с последующим впрессовыванием втулки при нежесткой посадке такой тонкостенной втулки возможно появление колебаний. Отверстия в корпусе следует делать таких размеров (если есть возможность ), чтобы борштанга станка проходила насквозь все отверстия по оси точность в этом случае наибольшая. При этом в корпус вставляются толстостенные втулки, а внутри них помещаются шарикоподшипники. Все отверстия могут быть одного диаметра, а если по соображениям удобства сборки необходимо перемещать подшипники вдоль оси, то для удобства отверстия делают разного диаметра с уменьшением его на каждой втулке на 2 мм. Если даже отверстия будут обработаны неправильно, то на втулке исправление сделать легко и недорого, так как подобные детали изготовляются на токарных станках. Очень важно предусмотреть, чтобы линейные (вдоль осей корпуса) размеры не имели жестких величин — следует вводить линейные компенсаторы. Но нужно помнить, что компенсатор должен быть жестким и при диаметре 50—70 мм иметь толщину не менее 5—7 мм, чтобы после подрезки по замеренному размеру сборки оставалось 3—5 мм. При диаметрах колец 120—150 мм толщины колец должны быть 10—15 мм.  [c.86]

Влияние обработки гидрополированием на предел выносливости стали изучалось на обычных образцах диаметром 14 мм с концентратором напряжений в виде кругового надреза глубиной 1 мм. Все образцы изготовляли на токарном станке из стали 1X13 одной плавки после нормализации НВ 200) при одинаковых режимах. Затем поверхность участка образца с надрезом обрабатывали гидрополированием (до 6-го класса чистоты) или механическим полированием (до 8-го класса чистоты), или дробью (до 5-го класса чистоты), или дробью с последующим гидрополированием (до 7-го класса чистоты). В зависимости от метода обработки поверхностный слой образцов имел различную глубину наклепа после обработки дробью 0,3 мм дробью с абразивом 0,2 мм гидрополированием (зерно ЭК-100) 0,15 мм после грубого шлифования 0,75 мм.  [c.315]


Результаты экспериментального опробования методов коррекции на токарном станке мод. 1А616, оснаш,енном шаговой системой ЧПУ, представлены в 15]. Они показывают, что даже при однократной коррекции программы управления (по результатам измерения только одной первой детали) точность обработки резко возрастает.  [c.19]

Графический метод построения копиров для обработки фасонных поверхностей на токарных ста нках. Необходимо спроектировать профили п Л2Д3 (рпс. 17) копирных планок двухпланочного копира для обработки детали, профиль образующей которой задан кривой АВ. Радиус вершины резца р равен радиусу копирного ролика г. Центр окружности радиуса р, по которой заточена вершина резца, будет находиться всегда на одинаковом расстоянии от профиля АВ по направлению нормали к последнему. Все точки резца, а следовательно, и поперечного суппорта, с которым связан резец, будут описывать такую же траекторию, как и центр закругления вершины резца. Проведем ряд окружностей радиуса р, касательных к профилю обрабатываемой детали. Соединив центры их, найдем путь центра вершины (кривая А В ). Так как ось копирного ролнка жестко связана с поперечным суппортом, на котором закреплен резец, то очевидно, ее траектория есть линия А"В", эквидистантная линии А В. Затем радиусом, равным радиусу копирного ролика, проведем ряд окружностей, центры которых расположены на линии Л В". Онп будут представлять собой ряд последовательных положений ролика при обработке фасонного профиля АВ детали. Огибающие Аф и AJ .2 этого ряда окружностей есть интересующие нас профили копирных планок.  [c.120]

Графический метод построения копиров для обработки фасонных поверхностей на токарных станках. Необходимо спроектировать профили и Л 2 8 (рис. 69) копирных планок двухпланочного копира для обработки детали, профиль образующей которой задан кривой АВ. Радиус вершины резца р равен радиусу копирного ролика г. Центр окружности радиуса р, по которой заточена вершина резца, будет находиться всегда на одинаковом расстоянии от профиля АВ по направлению нормали к последнему. Все точки резца, а следовательно, и поперечного суппорта, с которым связан резец, будут описывать такую лее траекторию, как и центр закругления вершины резца. Проведем ряд окружностей радиуса р, касательных к профилю обрабатываемой детали. Соединив центры их, найдем путь центра вершины (кривая А В ). Так как ось копирного ролика жестко связана с поперечным суппортом, на котором закреплен резец, то, очевидно, ее траектория  [c.552]


Смотреть страницы где упоминается термин Обработка методом на токарных станках : [c.332]    [c.148]   
Справочник технолога машиностроителя Том 1 (1963) -- [ c.182 , c.217 ]



ПОИСК



Копиры — для токарных станков — Графический метод построения для обработки фасонных поверхностей 120 — Пример расчета 128 — Расчетные формулы

Копиры — для токарных станков — Графический метод построения для обработки фасонных поверхностей 120 — Пример расчета 128 — Расчетные формулы схемы

Копиры — для токарных станков — Графический метод построения для обработки фасонных поверхностей 120 — Пример расчета 128 — Расчетные формулы формулы, схемы

Обработка Методы

Обработка методом врезания на токарно-карусельных станка

Разделпятый Обтачивание фасонных поверхностей Основные методы обработки фасонных поверхностей на токарных станках

Станки с токарные

Токарная обработка



© 2025 Mash-xxl.info Реклама на сайте