Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Схемы 308 — Измерения электрические — Характеристики

Исследования различных электронных схем, находившихся в нерабочем (пассивном) и рабочем (активном) состоянии при облучении, показали, что часть их не изменилась, а некоторые требовали после облучения незначительной регулировки или серьезного ремонта. Измерение электрических характеристик отдельных элементов схем позволило установить разнообразие эффектов воздействия излучения, а также возможные взаимодействия элементов, обусловленные изменениями их характеристик во время работы.  [c.344]


Схемы 308 — Измерения электрические — Характеристики 302  [c.1067]

Схемы установок для измерения электрических характеристик, материал, форма и размеры электродов, напряжение и пр. нормируются ГОСТ 6433—52 и 2068—70.  [c.198]

Простейшая схема для измерения электрических характеристик датчика показана на рис. 7. Напряжение питания Vg приложено к последовательно соединенным чувствительному элементу,, терморезистору и резистору 1,5 кОм, а выходное напряжение Увых  [c.40]

Широкое применение для измерения электрических характеристик объекта контроля нашли односторонние емкостные накладные датчики [3, 4]. На рисунке 1.1 показана расчетная схема планарного преобразователя с охранным электродом.  [c.9]

Так, государственный первичный эталон и общесоюзная поверочная схема для средств измерений электродвижущей силы и электрического напряжения установлены ГОСТ 8.027—76, государственный первичный эталон и общесоюзная поверочная схема для средств измерений электрической емкости и тангенса угла потерь установлены ГОСТ 8.019—75, основные характеристики эталонных сигналов частоты и времени, излучаемых специализированными радиостанциями государственной службы времени, приведены в ГОСТ 8.323—78.  [c.85]

Потенциал электрода сравнения обычно создается воздухом ро - 0,021 МПа), а потенциал рабочего электрода обеспечивается давлением диссоциации кислорода газовой смеси при температуре, обеспечивающей стабильность электрических свойств электролита (для стабилизированного оксида циркония Т > 800 °С). Чем выше температура, тем уже область стабильных характеристик электролита = 1), обеспечивающих простые схемы измерения и расчета кислородного потенциала (см. рис. 2.3).  [c.102]

Для измерения силы тока высокой частоты можно воспользоваться амперметрами с термопреобразователями типов Т-14 и Т-18. Для измерения электрической мощности разработаны схемы ваттметров, работа которых основана на использовании нелинейных характеристик некоторых преобразователей. В качестве таких преобразователей используются диоды, вакуумные термопреобразователи и т. п. Такие преобразователи использованы в ваттметрах типов ЭВ-1, ВУЧ-2, Т-141 [19 и др.]. Ваттметр типа Т-141 имеет значительную инерционность и не позволяет выявить потребление энергии преобразователем в процессе сварки, который протекает, как правило, доли секунды. Для этой цели более целесообразно использовать датчики Холла . Такой датчик может быть использован в качестве перемножающего устройства действующих значений тока и напряжения. Схема измерения мощности типовым ваттметром показана на рис. 62.  [c.105]


Метод циклограмм может быть применен для экспериментального исследования характеристик разрядов в газовых включениях изоляции только при повышении чувствительности электрической схемы установки благодаря введению в нее усовершенствований [60]. Мостовой метод также является недостаточно чувствительным для изучения зависимости tg 6 = / ( /эфф). сли размеры газовых включений сравнительно невелики. Поэтому при изучении характеристик разрядов в газовых включениях сравнительно небольших размеров, что и имеет место в диэлектриках промышленных изделий, широко применяются индикаторы частичных разрядов ИЧР [61]. Наиболее распространены ИЧР, регистрирующие электрические импульсы (сигналы), возникающие в цепи вследствие разрядов в воздушных включениях диэлектрика. Сюда относятся а — схема измерения высокочастотных составляющих тока б — схема с конденсатором связи в-— мостовая схема (рис. 3-11). В этих индикаторах электрические сигналы, возникающие при разрядах, усиливаются и отмечаются регистрирующим устройством (осциллографом, стрелочным прибором или счетчиком импульсов). При таких исследованиях возникают следующие затруднения  [c.98]

Проверка электрических характеристик электромагнитных реле производится по схеме фиг. 265 при помощи вольтметра и амперметра. Установив силу тока в катушках реле, равную силе тока перегрузки, плавно уменьшают ток до размыкания фронтовых контактов. Измеренную при этом величину принимают за ток (напряжение) отпускания якоря. Оборвав цепь на 1—2 сек., постепенно увеличивают ток, пока не замкнутся фронтовые контакты. Измеренную величину принимают за ток (или напряжение) прямого подъёма. Увеличивая ток, пока якорь не дойдёт до упора, фиксируют ток (напряжение) полного подъёма. Увеличив ток до тока перегрузки, уменьшают его до нуля, меняют полярность и определяют ток  [c.352]

Рис. 2.5. Частотная характеристика модуля полного электрического сопротивления й) схема измерений б) типичная форма характеристики Рис. 2.5. <a href="/info/24888">Частотная характеристика</a> модуля полного <a href="/info/19019">электрического сопротивления</a> й) <a href="/info/672388">схема измерений</a> б) типичная форма характеристики
Единая система конструкторской документации. Обозначения условные графические в схемах. Элементы цифровой техники Операционные усилители. Терминология и определения Микросхемы интегральные. Электрические параметры, термины, определения и буквенные обозначения Микросхемы интегральные аналоговые. Методы измерения электрических параметров и определения характеристик  [c.19]

Испытание и наладка электронных систем станков с ЧПУ проходят в такой последовательности внешний осмотр проверка правильности включения в схеме элементов и их монтажа испытание изоляции на электрическую прочность и измерение сопротивления изоляции измерение напряжений и токов в элементах электронной схемы снятие рабочих характеристик (коэффициента усиления, искажения сигнала, фронта сигналов и др.) контрольная нагрузка схемы на исполнительный элемент или его эквивалент запись результатов измерений и проведенного испытания в специальную карту.  [c.269]

Контроль геометрических параметров объектов с необходимыми эффективностью, точностью и быстродействием возможен при использовании методов многомерного оптического кодирования измерительной информации. Такое кодирование осуществляется в оптической схеме датчика, т. е. самого узкого звена системы, каким обычно является фото.электрический преобразователь, что исключает источники потерь измерительной информации и улучшает метрологические характеристики измерительного преобразователя в целом. Под многомерным оптическим кодированием следует понимать преобразование входного оптического изображения или световых полей объекта, переносящих изображение, в другое оптическое изображение или другие световые поля, наилучшим образом соответствующие возможностям измерения и передачи полезной информации.  [c.88]


Принцип действия этих приборов основан на определении исследуемых характеристик состава и структуры материала по его электрическим параметрам (диэлектрической проницаемости и коэффициенту диэлектрических потерь) Для измерения первичных информативных параметров ЭП может быть использована любая схема для  [c.170]

Для электрических коррозионных исследований часто бывает нужно иметь несколько измерительных самопишущих приборов, ведущих синхронную запись эти приборы иногда оказываются довольно тяжелыми. Чтобы можно было быстро и надежно доставить их к отдаленным точкам измерения на местности, целесообразно размещать такие приборы в передвижной лаборатории на автомобильном шасси. Для работ по обслуживанию и контрольных измерений обычно бывает достаточно иметь комбинированный легковой автомобиль. Напротив, для длительной записи блуждающих токов рекомендуется применять автомобиль с крытым кузовом, в котором можно было бы работать стоя. В разделе З.З (табл. 3.2) приведены характеристики важнейших измерительных приборов. Время для сборки электрических измерительных схем может быть сокращено благодаря применению щита с распределительными шинами (швейцарского щита), подключенного к измерительным клеммам на наружной стенке передвижной лаборатории и к рабочим клеммам измерительных приборов. Для электрического питания и обеспечения работы самопишущих приборов целесообразно иметь аккумуляторную батарею на 12 В и умформер (генератор) на 220 В. Все результаты, данные о длительности измерений, времени их проведения и прочие факторы могут быть прямо на месте занесены в протокол измерений. При колебаниях измеряемых величин во времени  [c.81]

Применение ультразвуковых методов для композиционных материалов из-за сильного затухания упругих волн возможно только при условии снижения частоты в области ниже 1 мГц. Для крупногабаритных конструкций и изделий с толщиной свыше 50—100 мм частотный диапазон в зависимости от типа материала и контролируемого параметра должен находиться в области 50—500 кГц. При контроле физико-механических характеристик для повышения точности измерений необходимы малое затухание и высокая крутизна переднего фронта упругой волны. Однако малое затухание можно получить только на низких частотах (20—200 кГц), а высокую крутизну переднего фронта — на высоких частотах. При контроле дефектов снижение частоты приводит к снижению чувствительности и разрешающей способности, увеличению длительности сигнала (мертвой зоны), а повышение частоты уменьшает диапазон контролируемых толщин. Таким образом, применение ультразвуковых методов для композиционных материалов выдвигает ряд новых требований, осуществление которых приведет к изменению методики контроля, конструкции преобразователей и принципиальных электрических схем приборов. К этим требованиям относятся  [c.85]

Основным недостатком является сложная электрическая схема, обусловленная требованием скачкообразной характеристики что необходимо для срабатывания системы при достижении заданного размера. Более рационально применение индуктивных систем для связи измерительного щупа с исполнительными органами, когда необходимо осуществлять непрерывное измерение, поскольку в этом случае плавность характеристики обеспечивается простой схемой. Поэтому приспособления с индуктивными системами применяются, главным образом, для наблюдения за измерением размеров в случаях непрерывного процесса изготовления, например, для контроля толщины ленты во время прокатки (фиг. 106).  [c.215]

Основные характеристики сопротивление проволочных тензодатчиков 50—200 ом диапазоны измерения относительных деформаций 0Д2 0,06 и 0,2о/о диапазон регистрируемых частот от О до 1500 гц регистрация осциллографом со шлейфом типа 1Т. Питание от сети через стандартный выпрямитель с электронной стабилизацией типа БУС-1. Отклонение амплитудной характеристики от прямой и неравномерность частотной характеристики Зо(о в диапазоне измерения. Схема входа позволяет включать электрический фильтр для снижения влияния паразитных наводок.  [c.496]

Собирается электрическая схема с переключателем, позволяющим вести измерения по каждой термопаре отдельно по одноэлектродной схеме (рис. 1Ы5,а). В процессе нагрева и останова снимают кривые ti, /2 и Затем, определив для каждого момента времени АЕ и Д/, строят характеристику одноэлектродной термопары. Так как разность температур обычно достигает максимума  [c.238]

Емкостные датчики позволяют вести измерения в области давлений от 0,05 до 0,5 МПа. Датчики имеют мембраны диаметром до 10 мм и выполнены малогабаритными с использованием металла и керамики. При соблюдении необходимых для термокомпенсации соотношений размеров конструктивных элементов они могут работать с минимальной погрешностью до температур 300—400 °С в зоне чувствительного элемента. Однако емкостные датчики обладают значительной нелинейностью для датчика на давление 0,05 МПа — 4%, а на давление 0,36 МПа — 8%. Нелинейность обусловлена исключительно прогибом Мембраны, поскольку характеристика электрической схемы практически линейна. Датчики  [c.69]

Манометрические преобразователи. Датчики вакуумметров, основанных на косвенном измерении давления разреженного газа, называются манометрическими преобразователями — они преобразуют давление или плотность газа в электрический сигнал, который затем усиливается измерительной схемой вакуумметра и отсчитывается по стрелочному прибору. Промышленностью выпускаются теплоэлектрические, термопарные, магнитные, электроразрядные, ионизационные, инверсионно-магнетронные и другие преобразователи. Их технические характеристики приведены в табл. 8-5.  [c.379]


Электрические тахометры (тахогенераторы) представляют собой малогабаритные генераторы постоянного или переменного тока. На рис. 4.16, б представлена схема тахогенератора постоянного тока с независимым возбуждением. Угловую скорость измеряют через напряжение генератора Статическая характеристика промышленных тахогенераторов линейна, погрешность измерений - 2 - 3%.  [c.102]

Реостатные испытания тепловоза ведутся на типовых водяных реостатных установках, обеспечивающих реализацию максимальной мощности дизель-генератора, работу во всех точках внешней характеристики тягового генератора, возможность измерения необходимых параметров для настройки дизеля и электрической схемы. Такая установка располагается вблизи участка железнодорожного пути, на котором устанавливают отремонтированный тепловоз для испытания.  [c.304]

На рнс. 5.15,6 показана схема измерения частотной характеристики модуля полного электрического сопротивления в режиме постоянства тока. Сопротивление резистора Я1 должно ие менее, чем в 20 раз, превышать предполагаемое максимальное значение модуля полного электрического сопротивлеиия телефона. Записывают частотную характеристику уровня напряжения на телефоне. Затем телефон заменяют резистором Яг, значение сопротивления которого должно находиться в пределах от минимально допустимого значения модуля полного электрического сопротивления телефона до номинального электрического сопро-тив.пения телефона. На том же бланке записывают частотную характеристику уровня напряжения на резисторе Яг. Модуль полного электрического сопротивления телефона в режиме постоянства- тока на фиксированной частоте  [c.280]

Достаточно точные результаты могут быть получены при онределении внешней характеристики путем записи скорости вращения ведущего и ведомого валов и крутящего момента, передаваемого турбомуфтой при помощи осциллографа (схема измерений на рис. 43). Во время таких испытаний при иомощи фрикционного или электрического тормоза создают непрерывно увеличивающуюся нагрузку на валу турбомуфты вплоть до остановки турбины. Время от начала торможения до остановки турбины должно составлять 15—20 сек. При таком времени торможения неустановившиеся процессы в рабочей полости не влияют на внешнюю характеристику. Если эта характеристика определена описанным выше способом, то она не отличается от характеристики, снятой с выдерживанием нагрузки на каждом режиме. Номинальное скольжение и в этом случае определяется отдельно при помощи высокоточных приборов.  [c.99]

ГОСТ 8.417—81 ГСИ. Единицы физических величин ГОСТ 8.498—98 ГСИ. Государственный эталон и государственная поверочная схема для средств измерений электрической добротности ГОСТ 8.508—84 ГСИ. Метрологические характеристики средств измерения и точностные характериРаздел III. СЕРТИФИКАЦИЯГлава 13. Деятельность органов по сертификации и лабораторийстики средств автоматизации ГСП. Общие методы оценки и контроля  [c.506]

Конечноэлемептные расчеты ротора позволяют нам получпть зависимости жесткостных (илп электрических) характеристик и коэффициента интенсивности па-пря/кений от относительных размеров трещины, геометрии и схемы нагружения. Эти зависпмостн позволяют оценить допустимое число циклов нагружения до возникновения макротрещины и допустимое число циклов нагружения на стадгш ее медленного развития до момента хрупкого разрушения, с одной стороны, п организовать эксплуатационную диагностику ротора, с другой. Для диагностики очень удобен, например, так называемый метод вибродиагностики, позволяющий по измерениям собственных частот и форм колебаний контролировать рост скрытых трещин.  [c.194]

Выбор элементов измерительного контура схемы и ЯУ тесно связан с вопросом помехозащищенности схемы. Источниками электрических помех могут быть как внутренние, зависящие от напряжения на образце физические процессы в схеме, так и внешние, не зависящие от указанного напряжения. Примером внутренних помех могут быть сигналы, вызванные коронными разрядами на элементах высоковольтной схемы или вводах испытуемого образца. К внешним помехам относятся собственные шумы усилителя ЯУ, сигналы в сети питания или сигналы, наведенные на элементы схемы при работе радиостанций. Для устранения или ослабления помех применяется целый ряд способов. Прежде всего, источник напряжения и со-единнтельный конденсатор Со не должны иметь ЧР, мешающих измерениям характеристик ЧР в испытуемом объекте. Система шин, выводы и фланцы элементов установки должны быть  [c.405]

Влияние сопротивления подвижной катушки на выходной ток можно практически исключить [23], если в рабочем диапазоне частот выходное сопротивление усилителя мош,ности достаточно велико / вых 2эл + + (2 эл)вн , где гэл — полное электрическое сопротивление подвижной катушки, (гэл)вн — вносимое электрическое сопротивление, определяемое выражением (17). Усилители тока обычно выполняются по бестрансформа-торной схеме включения. К- п. д. таких усилителей сравнительно низок, поэтому их целесообразно применять в области точных измерений виброакустических характеристик, 5 частности механического сопротивления собственных частот и форм сложных систем. Пример усилителя такого рода дан в гл. 4.  [c.37]

Эти приборы основаны на том, что, как правило, значения е -и у электроизоляционных материалов при повышении влажности возрастают (ср. принцип действия гигромистора, стр. 247) для определенных типов материалов (дерево, бумага, текстиль и т. п.) удается получить определенную однозначную зависимость е или у от влажности и, таким образом, по результатам измерения электроизоляционных характеристик оказывается возможным получать непосредственно значение влажности более того, иногда возможно градуировать измерительный прибор непосредственно в значениях влажности (в процентах). Описываемые при--боры различаются по характеру непосредственно измеряемого параметра (е или же у) по избранной электрической схеме и по устройству электродов, наиболее удобных для подсоединения к испытуемому материалу например, для измерения влажности -дерева, можно использовать два фиксированных на определенном -расстоянии друг от друга игольчатых электрода, вкалываемых на определенную глубину в дерево.  [c.254]

Важной характеристикой ГГ является коэффидиеит электромеханической связи Б/, определяемый как произведение индукции магнитного поля В по длине намотки звуковой катушки ГГ на длину проводника I звуковой катушки ГГ. Данный коэффициент характеризует эффективность электромеханического преобразования энергии электродинамической системы ГГ и может быть определен по электрическим входным характеристикам (резонансной частоте, добротности и др.) ГГ или приближенно оценен по измеренному среднему значению индукции в рабочем зазоре магнитной цели и длине проводника звуковой катушки ГГ. На рис. 2.8 приведена схема измерения среднего значения индукции в зазоре магнитной цепи ГГ.  [c.108]

Измерение частотной характеристики модуля полного электрического сопротивления в режиме постоянства напряжения производится по схеме, показанной на рис. 5.15,0. Сопротявление резистора не должно составлять бо-  [c.280]

При диагностировании гидросистемы контролируются параметры пл — угловая скорость планшайбы — давление у насоса — давление на входе гидромотора Qq — расход насоса Ок.вых — расход на сливе предохранительного клапана Мгм — момент на валу гидромотора Рзаж, раз — давления в системе зажима и разгрузки планшайбы соответственно . Si зол и б зоя — перемещения золотников гидропанели. Знак + свидетельствует о том, что величины указанного параметра находятся в пределах, близких к нормальным знак — указывает на значительное отклонение параметра от нормальных значений. Анализ данной схемы подтверждает, что при выполнении проверок и измерении указанных параметров представляется возможным обнаружение основных дефектов. На схеме основная цепочка работоспособности проходит но линии параметров СОпл дв, Pi, Рзат, Р раз, Мгм- в этом случае гидравлическая и электрическая системы работоспособны и дефекты находятся в механической системе стола. Обозначенные связи предлагают возможную последовательность поиска дефектов гидросистемы поворотного стола. Для дальнейшего поиска дефектов и анализа работоспособности гидросистемы целесообразно провести проверку электрической системы. При наличии нескольких конечных выключателей ВК, электромагнитов, реле давлений и электрических реле, управляющих работой электропривода и гидроаппаратуры, а также взаимных блокировок, полная схема диагностических проверок представляется достаточно сложной. Однако, для обнаружения причин отсутствия функционирования может использоваться упрощенная схема, показанная на рис. 3, б. Наличие дефектов механической системы стола может быть выявлено проверкой по схеме рис. 3, в. Однако выявление и интерпретирование дефектов механической системы при нефункционирующем объекте усложнено отсутствием контроля необходимых параметров, и в ряде случаев необходима частичная разборка узла или замена некоторых механизмов. Функционирующий стол может быть работоспособен и неработоспособен. Неработоспособный стол характеризуется выходом за допустимые пределы основных параметров, т. е. наблюдается потеря точности, быстроходности, а также значительно возрастают нагрузки в приводе и механизме фиксации. Потеря точности зависит от следующих факторов нестабильности скорости планшайбы в момент фиксации Дшф, нестабильности давления в системе поворота ДРф и разгрузки АР раз, наличия зазоров в механизме фиксации и центральной опоре, нестабильности характеристик жесткости упоров и усилий фиксации. Потеря быстроходности зависит от расхода Q и давления в системе поворота Р и разгрузки Рраз. от наличия колебательного движения планшайбы, характеризуемого коэффициентом неравномерности — б , и от длительности процесса торможения <тор- Высокие динамические нагрузки в приводе и механизме фиксации F определяются величинами скорости поворота и фиксации, давлением в системе поворота и разгрузки,  [c.86]


Динамические измерения. Для записи деформаций высоких частот применяется наиболее простая схема потенциометра с усилителем переменного тока (фиг. 175, а). Верхний предел измеряемых частот около 8000 гц может быть поднят применением очень коротких низкоёмкостных проводников и понижением коэфициента усиления отдельных ступеней усилителя. Нижний предел измеряемых частот 5—10 гц. Изменяющееся электрическое напряжение датчика подается на усилитель. Последний должен иметь линейную частотную характеристику во всём диапазоне измерений. При измерении статических деформаций схема потенциометра не применяется из-за неустойчивости усилителя постоянного тока при длительной работе.  [c.238]

Наибольшее распространение при измерении шероховатости поверхностей получили щ уповые методы, что объясняется относительно простой схемой регистрации и анализа информации. В основе этих методов лежит механическое ощупывание неровностей индентором и передача колебаний последнего на чувствительный датчик, преобразующий эти колебания в электрический сигнал. При линейной характеристике датчика сигнал, снимаемый с него, представляет собой профиль исследуемой поверхности в плоскости перемещения индентора. Создание комплексов на основе профилометров, состыкованных с ЭВМ, позволяет получать профиль в любом выбранном сечении, определять площадь опорной поверхности на заданном уровне, объем замкнутых полостей, образованных неровностями. и т. д. Вместе с тем измерение шероховатости с помощью щуповых методов имеет ограничение по точности и адекватности получаемой информации. Это связано со свойствами индентора, как твердого тела, имеющего конечные геометрические размеры и обладающего конструктивными связями. Возможности метода ограничены регистрацией неровностей с шагами не менее 2 мкм и углами наклона не более 20°. Недостатки методического характера связаны с невозможностью получения информации о морфологии и текстуре поверхности.  [c.175]

В литературе оценка магнитострикционных материалов и сравнение их меж ду собой, как правило, производятся по величине динамических характеристик, соответствующих малым амплитудам индукции и напряжения. При этом магнитострикционные, магнитные и упругие характеристики можно считать константами, зависящими только от подмагничиваю-щего поля. Такой линейный подход позволяет широко пользоваться методом эквивалентных схем при рассмотрении работы преобразователей и расчете их режимов. Определение характеристик материалов в линейном режиме достаточно просто значение их можно вычислить, если известна частотная зависимость электрического импеданса катушки, намотанной на сердечник из исследуемого материала (для получения точных значений — на кольцевой сердечник). Этот метод широкоизвестен (см., например, работы [1, 7, 8, 14]) и повсеместно применяется. Он использовался и при определении характеристик ферритов, приведенных в 1 и 2 настоящей главы. Часто полученные таким образом при малых амплитудах значения характеристик экстраполируют на рабочий режим излучателей, когда амплитуда механических напряжений составляет от десятков до нескольких сотен кг/см , а амплитуда индукции достигает тысяч гаусс, приближаясь к величине Вз- Однако такую экстраполяцию следует производить с осторожностью, а оценку материалов по характеристикам, измеренным при малых амплитудах, следует рассматривать лишь как предварительную, потому что магнитострикционные материалы характеризуются заметной нелинейностью свойств.  [c.125]

Катодно-осциллогафическая двух-канальная установка для регистрации динамических и ударных деформаций (Институт машиноведения АН СССР) [54]. Включение проволочного тензодатчика по потенциометрической схеме усилитель переменного тока. Регистрация ведется фотографированием с экрана катодной трубки путем механической развертки на пленку на вращающемся барабане или электрической развертки на неподвижную пленку пленка шириной 35 мм, чувствительность 6000. Синхронизация включения частей аппаратуры с регистрируемым процессом осуществляется от одного канала сигналом от датчика деформаций или внешним синхронизирующим устройством с замыкающими контактами. Установка состоит из 1) катодно-осциллографиче-ской части с генераторами и усилителями на два канала, с катодной трубкой, ждущей разверткой и фотоприставкой с объективом и кассетой на 36 кадров и приспособлением для визуального наблюдения 2) устройства для питания со стабилизатором и выпрямителем 3) механической развертки с вращающимся барабаном, отметчиком времени, фотографической частью и синхронизатором. Основные характеристики сопротивление проволочных тензодатчиков от 50 до 200 ом плавное изменение диапазонов измеряемых относительных деформаций от 0,05 до 0,5°/о диапазон регистрируемых частот от 10 до 50 ООО гц скорости ждущей развертки от 50 мксек до 0,1 мсек на 120-лгж экране катодной трубки скорость вращения барабана от 1 до 10 м сек при длине пленки 1 м отклонение амплитудной характеристики от прямой и неравномерность частотной характеристики не превосходят 3°/о в диапазоне измерения питание от сети.  [c.496]

Из краткого описания только что приведенного автоматически записывающего устройства с колшепсацией оптических сигналов и сравнения с ранее рассмотренным действием автоматически регистрирующего электронного потенциометра с компенсацией электрических сигналов хорошо видна их аналогия. Различие состоит только в том, что в одном случае уравниваются световые сигналы, действующие на приемник с помощью светоослабляющей системы, а в другом случае уравниваются электрические сигналы, идущие от приемника с помощью реохорда компенсационной мостовой схемы. Последняя также может быть проградуирована в процентной записи прозрачности. Различие между этими измерительными системами, однако, состоит в том, что при оптической компенсации измерения практически не зависят от световых характеристик приемников, тогда как при электрической компенсации, хотя и в неявной форме, используются фотометрические свойства приемника, т. е. линейность его световой характеристики. По этим и некоторым другим причинам электрические измерительные системы менее пригодны для рассматриваемых конструкций электрических спектрофотометров.  [c.416]

При всем многообразии аппаратуры и схем, предназначенных для определения магнитных характеристик ферромагнитных материалов в переменных полях, все они (за исключением калориметрического метода изаис-рения потерь) основаны на индукционном методе измерений и дают возможность непосредственного определения только электрических величин э. д. с. (илн напряжения) в измерительной обмотке образца и тока в намагничивающей обмотке (метод вольтметра и амперметра, потенциометры переменного тока, феррометр, электронный осциллограф и пр.) или отношения потокосцепления к намагничивающему току, а в конечном счете э. д. с. к току (мостовые методы) или произведения э. д. с. 176  [c.176]

Схема электрических измерений (в трехфазной четырехпроводной сети). 3-5. Перечень пунктов измерений. 3-6. Перечень подготовительных работ. 3-7. Техническая характеристика установки. 3-8.Теп-ловые характеристики установки. 3-9. Характеристики существующих измерительных устройств, используемых при испытании. 3-10. Протокол тарировки пружинных манометров. 3-11. Протокол проверки диафрагмы. 3-12. Результаты тарировки диафрагм по мерному баку. 3-12а. Протокол тарировки мерного бака. 3-126. Протокол тарировки вспомогательного мерного бачка. 3-13. Расчетные данные измерительных диафрагм. 3-14. Журнал наблюдений.  [c.177]


Смотреть страницы где упоминается термин Схемы 308 — Измерения электрические — Характеристики : [c.203]    [c.97]    [c.126]    [c.152]    [c.281]    [c.44]    [c.496]    [c.162]    [c.68]   
Справочник машиностроителя Том 3 (1951) -- [ c.302 ]



ПОИСК



Схемы Характеристики

Схемы измерений

Схемы электрические

Электрические измерения

Электрические схемы—си. Схемы электрические



© 2025 Mash-xxl.info Реклама на сайте