Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлы и сплавы коррозионностойки

В книге рассмотрены вопросы коррозии металлов и сплавов, коррозионная стойкость широко применяемых в технике металлов и сплавов, коррозионностойкие металлические и неметаллические материалы. Особенно подробно освещены вопросы защиты металлов и сплавов от коррозии, при этом большое внимание уделено основам гальваностегии.  [c.6]

Борьбу с химической коррозией металлоконструкций в жидких неэлектролитах ведут путем подбора устойчивых в данной среде металлов и сплавов (например, алюминия и его сплавов, коррозионностойких сталей в крекинг-бензинах) или нанесением защитных покрытий (например, покрытие стали алюминием для сероводородных сред).  [c.142]


КОНСТРУКЦИОННЫЕ, КОРРОЗИОННОСТОЙКИЕ МЕТАЛЛЫ И СПЛАВЫ  [c.66]

К этим металлам и сплавам относят обычно прецизионные сплавы с особыми свойствами теплового расширения и упругости, немагнитные, коррозионностойкие и теплостойкие сплавы, термобиметаллы и другие, а также редкие элементы.  [c.313]

Большое внимание уделяется новым и специальным жаропрочным, инструментальным, коррозионностойким, высокопрочным сталям (их составу, свойствам и применению), конструкционным титановым и алюминиевым сплавам, легированным бронзам, тугоплавким металлам и сплавам, стеклу и стеклокерамике.  [c.2]

Проводники по типу носителей зарядов делятся на электронные (металлы и сплавы), ионные (электролиты) и смешанные, где имеет место движение как свободных электронов, так и ионов (например, плазма). Чистые металлы обладают малым удельным электросопротивлением (рц = 0,0150... 0,105 мкОм-м). Исключением является ртуть, у которой удельное электросопротивление составляет 0,943...0,952 мкОм-м. Сплавы имеют более высокие значения удельного электросопротивления (рд= 0,30... 1,8 мкОм-м). К группе сплавов с повышенным удельным электросопротивлением относятся жаро- и коррозионностойкие сплавы, которые применяются в электронагревательных приборах и реостатах.  [c.91]

Справочник-атлас Структура и коррозия металлов и сплавов содержит сведения об используемых в промышленности коррозионностойких сплавах на основе железа (стали), никеля, титана, меди и алюминия.  [c.6]

С целью определения коррозионностойких конструкционных материалов для указанного производства проведены исследования химической стойкости ряда металлов и сплавов, используемых в химическом машиностроении.  [c.27]

Коррозионное растрескивание возникает при одновременном воздействии коррозионной среды и статических растягивающих напряжений. Напряжения могут быть внешние и внутренние. Коррозионному растрескиванию подвержены некоторые металлы и сплавы, а также высокопрочные и коррозионностойкие стали. Склонность к этому виду коррозионных разрушений определяется  [c.63]

Данные о коррозионной стойкости металлов и сплавов в разбавленных растворах кислот, приведенные в табл. 61, показывают, что и для этих сред выбор коррозионностойких материалов также ограничен.  [c.379]

Требования к коррозионной стойкости металлических конструкционных сплавов, предъявляемые современной техникой, становятся все более высокими. Появляются новые, особо агрессивные среды, повышаются температуры, давления и механические нагрузки, при которых работают ответственные металлоконструкции. Именно поэтому в последнее время при широком использовании коррозионностойких сталей и сплавов на основе никеля и титана возрастает практическое применение более редких металлов — циркония, молибдена, ниобия, тантала, вольфрама, кобальта и других металлов и сплавов на их основе.  [c.6]


Любопытно, что повышение стоимости, т. е. уменьшение доступности этих металлов примерно соответствует повышению их коррозионной стойкости. Тем не менее уникальные свойства коррозионной стойкости тугоплавких металлов часто приводят к экономической целесообразности использования этих металлов и сплавов на их основе как коррозионностойких материалов в наиболее ответственных, но преимущественно не металлоемких конструкциях или в качестве защитных покрытий (облицовок). С развитием и усложнением техники, практическое использование этих металлов неуклонно растет.  [c.298]

Неметаллические материалы, особенно органического происхождения, широко применяют в качестве защитных покрытий. При этом очень часто их использование оказывается более эффективным и экономичным, чем оборудование из дорогостоящих коррозионностойких металлов и сплавов.  [c.74]

Металлы. В условиях тропического климата металлы подвергаются усиленной коррозии, поэтому в качестве конструкционных материалов для изготовления изделий должны применяться коррозионностойкие металлы и сплавы. Применение других металлов и сплавов допускается при условии надежной защиты их от коррозии.  [c.701]

Качество поверхности. Вследствие высокой температуры разряда, мгновенного охлаждения металла, химического взаимодействия между расплавленным металлом и средой, поверхности после электроискровой обработки существенно отличаются от механически обработанных. На чёрных металлах и сплавах образуется почти бесструктурный слой толщиной 10—100 л/с высокой твёрдости (69- -72 7 0), износостойкий и коррозионностойкий. Он повышает стойкость штампов, является основой электроискрового упрочнения и имеет значение в других случаях.  [c.951]

Преимущество титана перед другими коррозионностойкими металлами и сплавами в том, что его коррозионное разрушение протекает равномерно. Точечная, язвенная или межзеренная коррозия титана наблюдается в очень редких случаях.  [c.380]

Коррозионная стойкость изделий может быть обеспечена применением коррозионностойких металлов и сплавов, однако они дороги, дефицитны, в ряде случаев применение их или экономически невыгодно, или неприемлемо из технических соображений.  [c.8]

В обоих случаях, изменяя температуры камер и скорость потока газовой среды, можно в широких пределах влиять на скорость насыщения, фазовый состав и структуру покрытия, их свойства. Циркуляционным способом, как показывает термодинамический анализ, можно вести диффузионное насыщение поверхности металлов и сплавов многими элементами, в том числе кремнием, алюминием, бериллием, титаном и др. [16, с. 68]. Несмотря на относительную сложность установки и необходимость изготавливать герметичную систему из жаростойких и одновременно коррозионностойких материалов, циркуляционный способ отличается высокой экономичностью (материалы вхолостую практически не расходуются), скоростью насыщения и, что весьма существенно, гигиеничностью.  [c.106]

Для коррозионностойких сталей, цветных металлов и сплавов..............г= (0,06ч-0,07) х  [c.11]

К этой категории относятся листовые биметаллы, биметаллические трубы, биметаллические профили и прутки. Подавляющее большинство выпускаемого коррозионностойкого биметалла приходится на биметаллы, которые в качестве основы имеют углеродистую или низколегированную сталь, а в качестве плакирующего слоя — коррозионностойкие стали различных композиций, медные и никелевые сплавы, медь, никель, титан, серебро, алюминий и некоторые другие металлы и сплавы.  [c.8]

Наиболее широко используют биметалл в виде листов. При этом в настоящее время в соответствии с разнообразными требованиями нашли применение следующие композиции сталей, металлов и сплавов углеродистая сталь + коррозионностойкая сталь  [c.29]

Несмотря на большое количество коррозионностойких металлов и сплавов, обладающих самыми разнообразными свойствами, эти конструкционные материалы в ряде производств не могут удовлетворить растущие потребности химической промышленности как с качественной, так и с количественной стороны. В первом случае некоторые новые технологические процессы, связанные с получением чистых химических продуктов, фармацевтических препаратов, продуктов органического синтеза, с реакциями хлорирования, бромирования и т. п., не могут быть осуществлены в аппаратуре из металлических материалов. Во втором случае такие производства, как производство минеральных кислот, удобрений, солей и др., требуют для оформления их технологического оборудования больиюго количества дорогостоящих дефицитных металлов и сплавов — высоколегиршшиных сталей, свинца, никеля, меди и других цветных метал/юг, и сплавов. Применение неметаллических материалов часто позволяет решать указанные выше задачи.  [c.352]


Из алюминиевомагниевых сплавов за 2 года испытаний наиболее коррозионностойкими оказались сплавы системы А1—Mg—Zn и А1—Mg так как изменение массы этих сплавов по сравнению с остальными алюминиевомагниевыми сплавами с самого начала опыта было наименьшей. У сплавов системы А1—Mg—Си потеря в весе была примерно в полтора раза больше как в открытой атмосфере, так и в павильоне жалюзийном. Магниевый сплав МА2-1 корродировал в 6 раз сильнее в открытой атмосфере, чем в павильоне. Сплавы систем А1—Mg—Си А1—Mg—Zn А1—Mg—Si корродировали в павильоне с жалюзи примерно в 2 раза больше, чем на воздухе. Такое своеобразное поведение алюминиевых сплавов в павильоне и в открытой субтропической атмосфере зависит от свойств образующихся продуктов коррозии. В павильонах жалюзийных создается своеобразный микроклимат, в результате чего амплитуда колебаний метеорологических элементов ниже, чем в атмосфере. Вследствие этого конденсация влаги и ее абсорция продуктами коррозии уменьшаются, что уменьшает скорость коррозии металлов и сплавов. Однако для некоторых алюминиевых сплавов более существенным фактором оказывается длительность пребывания пленки электролита на поверхности металлов, которая в павильоне больше, чем в открытой атмосфере, где солнечная радиация, ветры высушивают поверхность металла быстрее. Как видно, множество факторов, влияющих на атмосферную коррозию, не позволяет по одному какому-нибудь параметру предсказывать коррозионное поведение металлов и изделий в субтропиках.  [c.77]

В качестве легирующей добавки к чугуну и стали (в частности, коррозионностойкой), улучшающей их структуру, свойства и обрабатываемость к цветным металлам и сплавам, таким как РЬ, 5п, Си и их сплавы, улучшающей их свойства. Например, свинец, легированный 0,05 — 0,1 % Те, обладает повышенными механическими и антикоррозионными свойствами, применяется в кабельной промышленности. Добавки теллура к меди и ее сплавам улучшают их обрабатываемость и теплостойкость. Малые добавки (0,1 —1,0% Те) к оловянистым сплавам, в частности антифрикционным, повышают их твердость, прочность и р аботоспособность  [c.347]

Разрешение проблемы коррозии реакторных установок преду-сматриваетодновременное использование коррозионностойких металлов и сплавов с учетом их ядерных свойств и частично обработку теплоносителя — для уменьшения его агрессивности. Наибольшее внимание в этом отношении уделено свойствам воды и.ее обработке, так как вода до сих пор является наиболее универсальным теплоносителем и рабочим телом.  [c.4]

Приведенная схема работы гальванической пары лежит в основе электрохимической коррозии металлов и сплавов. Разные фазовые составляющие, присутствуюпще в структуре сплава, находясь в электролите, приобретают разные по величине и знаку электродные потенциалы. Чем больше различие в электродных потенциалах отдельных фазовых составляющих, тем активнее будет протекать коррозионный процесс и коррозионное разрушение сплава. Электрохимическая гетерогенность поверхности металла является причиной коррозии. Более коррозионностойкими являются сплавы со структурой однородного твердого раствора.  [c.490]

Рассмотрены основные положения теории коррозии и пассивности металлов и сплавов. Описан механизм наиболее опасного вида коррозии — локальной, а также коррозии при одновременном воздействии механических напряжений. Показано влияние условий эксплуатации на коррозионное поведение конструкционных сплавов. Изложены принципы создания металлических сплавов повышенной стойкости. Описаны свойства важнейших конструкционных коррозионностойких сплавов. Указаны способы повышения коррозионной стойкости сплавов специального назначения поверхностным легированием, созданием металлокерами ческих композиционных материалов, получением сплавов в аморфном состоянии.  [c.2]

В некоторых условиях для металлов и сплавов, склонных к перепассивации (как, например, для коррозионно-стойких сталей), при дальнейшей анодной поляризации при еще более положительных потенциалах за областью перепассивации наблюдается вновь торможение процесса анодного растворения. Это явление получило название вторичной пассивности. В настоящее время, несмотря на ряд работ, посвященных исследованию вторичной пассивности, главным образом, нержавеющих сталей и никеля [20, с. 5] остается еще не вполне ясным механизм этого явления. Согласно представлениям Т. Хоймана и сотрудников вторичная пассивность коррозионностойких сталей обусловлена пассивацией железа, содержание которого на поверхности возрастает вследствие избирательного растворения хрома. М. Пражак и В. Чигал считают, что явление вторичной пассивации связано с образованием на поверхности сложного оксида (содержащего хром и железо) типа шпинели.  [c.59]

Возможность использования катодного модифицирования коррозионностойких сталей введением в них небольших добавок благородных металлов для повышения их пас-сивируемости и коррозионной стойкости была рассмотрена нами еще в 1948 г. [20]. В последующих работах этот метод был всесторонне развит и применен к ряду легко пассивирующихся металлов и сплавов (титан, коррозионно-стойкие стали, хром), как в СССР [7, 20, 42, 43, 106], так и за рубежом [184—186]. В качестве катодных присадок были исследованы различные электрохимически положительные металлы с низким перенапряжением водорода (РЬ, Pt, Ru, Ir, Rh, Os, Au). Было установлено, что положительный эффект катодного модифицирования проявляется тем значительнее, чем выше содержание в стали хрома.  [c.211]

Коррозионностойкие металлы и сплавы, композиции на основе этиноля и резиновые покрытия рекомендованы после длительных производственных испытаний на Омском сажевом заводе, остальные методы защиты — после лабораторных и по-лупроизводственных испытаний.  [c.53]


На основании полученных при исследовании данных по коррозионной стойкости испытуемых металлов и сплавов в процессах диазотирования большого количества аминов, а также в реакциях азосочетания и синтеза различных азокрасителей было установлено, что наиболее коррозионностойким материалом является сплав ВТ1-1. Было также установлено, что титан в отличие от стали и свинца почти не разрушает диазосоединения и не влияет отрицательно на выход и качество азокрасителей.  [c.113]

Коррозионностойкие металлы и сплавы в производстве бутилкаучука применяются в небольшом количестве, преимущественно в запорной или регулирующей арматуре, а также в некоторых приборах. Проблемы борьбы с коррозией здесь, в основном, решаются путем тщательного обезвоживания исходного и особенно возвратного хлористого метила, после чего становится возможным применение теплообменной и иной аппаратуры из углеродистой стали. Вальцевание труб в решетках кожухотрубных аппаратов обычно не обеспечивает неироницаемсти для паров хлористого метила и поэтому приходится применять сварные соединения. Во избежание подсоса воздуха сварные. соединения предпочитают вместо фланцевых и на трубопроводах.  [c.309]

По характеру разрушений коррозию делят на общую, местную и межкристаллнтную. Для борьбы с коррозией используют покрытия металлами, стойкими к коррозии, неметаллами (лаками, красками, эмалью), а также оксидные пленки (воронение, форсфатирование), имиче-ски стойкие сплавы и др. Если раньше борьба с коррозией указанными способами приносила ощутимые результаты, то в современных условиях эта борьба резко осложнилась. Металл в основном применяли в машино-, станкостроении, на железнодорожном транспорте. Сейчас резко увеличился удельный вес использования металла в агрессивных средах, в условиях высоких температур и скоростей с одновременным воздействием силовых нагрузок. Появилась потребность в коррозионностойких, жаростойких сплавах. Коррозия таких материалов бывает трех видов коррозионное растрескивание, характерное для тепловой, атомной, нефтегазовой техники, поражающее изделия из высокопрочных металлов и сплавов межкристаллитная коррозия, разрушающая коррозионно-стойкую сталь, сплавы меди, алюминия точечная коррозия (питтинговая), быстро проникающая в глубь металла, выводящая из строя детали сельскохозяйственной техники.  [c.16]

При штамповке деталей из цветных металлов и сплавов, мягких сталей (ов<40 кгс/мм ) рабочие части штампов изготовляют из чугунов СЧ24-44 СЧ28-48 СЧ32-52, при штамповке деталей из коррозионностойких и высокопрочных сталей и сплавов рабо-  [c.103]


Смотреть страницы где упоминается термин Металлы и сплавы коррозионностойки : [c.117]    [c.92]    [c.3]    [c.29]    [c.137]    [c.801]    [c.87]    [c.113]    [c.119]    [c.119]    [c.4]    [c.5]   
Коррозионная стойкость материалов (1975) -- [ c.88 ]



ПОИСК



Гальванические покрытия тугоплавких металлов и сплавов, коррозионностойких сталей

Конструкционные, коррозионностойкие металлы и сплавы

Коррозионностойкие металлы

Коррозия металлов и сплавов и коррозионностойкие материалы

Металлы и сплавы Металлы

Сплавы коррозионностойкие

Сплавы металлов



© 2025 Mash-xxl.info Реклама на сайте