Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Машины испытательные динамические

Описанные в настоящей главе испытательные машины с кривошипным способом силовозбуждения широко используются для испытания на усталость как лабораторных образцов различной формы и размеров, так и многих натурных деталей. В последнем случае необходимость надежного крепления детали в захватах машины часто связана с появлением в колебательной системе значительных сосредоточенных масс. При работе машины на динамическом режиме силы инерции этих масс существенно изменяют нагруженность отдельных элементов конструкции, в связи  [c.121]


Независимо от силовой схемы, средств силового возбуждения и других конструктивных признаков подав-ляюш,ее большинство испытательных машин в динамическом отношении может быть представлено ограниченным числом схем колебательных систем с сосредоточенными параметрами. Для машин каждой группы, объединенных одной такой схемой, общими являются динамические особенности возбуждения переменных нагрузок и условия передачи их на образец.  [c.36]

Ко второму типу относятся машины с гидравлическим нагружением, у которых нагрузка на испытываемый образец создается давлением рабочей жидкости (масла) на поршень гидроци-линдра. Усилие, приложенное к образцу с одного конца, требует уравновешивающего воздействия на него с противоположного. Уравновешивание активного усилия осуществляется в различных машинах по-разному, но в любом случае в пределах кой-струкции машины. Поэтому на фундамент испытательной машины действует лишь ее собственный вес и динамическое усилие, возникающее вследствие упругой отдачи, вызываемой разрушением образца.  [c.10]

По назначению различают машины и установки для испытаний на растяжение (разрывные машины) на сжатие и изгиб (испытательные прессы) на растяжение, сжатие и изгиб (универсальные машины) на ударную вязкость на статическую и динамическую твердость на кручение и скручивание на технологические и специальные виды испытаний.  [c.40]

В книге обобщены результаты работ по созданию комплекса научного оборудования для программных испытаний на усталость. Приведены характеристики усталости, определяемые с помощью программных испытательных машин, дано обоснование основных требований, предъявляемых к таким машинам, а также методов составления испыта гельных программ по данным статистической обработки информации об эксплуатационной нагруженности деталей. Основное внимание уделено динамическому исследованию программных испытательных машин, программирующих и стабилизирующих устройств, командной и исполнительной аппаратуры.  [c.2]

В монографии обобщен опыт проектирования, расчета и динамического исследования программных испытательных машин и различных командных устройств, а также некоторых приборов для изучения кинетики усталостного разрушения.  [c.3]

Создание каждой новой машины Должно сопровождаться расчетом и экспериментальным исследованием, позволяющим исходя из требований, предъявляемых к испытательному оборудованию данного типа, обосновать выбор основных динамических параметров для достижения заданных характеристик машин по  [c.85]


Результаты исследования машин позволяют сделать вывод что при соответствующем выборе динамических параметров и соблюдении ряда специфических условий при конструировании программные испытательные машины с возбуждением переменных напряжений постоянным усилием обеспечивают высокую точность воспроизведения задаваемого программного режима и варьирование его в широких пределах. Это позволяет рекомендовать такие машины для исследования закономерностей сопротивления усталости при действии нестационарных нагрузок, характерных для большинства современных машин и механизмов.  [c.94]

В гл. III отмечено, что аппаратурный способ программирования развиваемых усилий или перемещений с формированием электрических сигналов, пропорциональных нагруженности образца или его деформации, предопределяет основной состав динамической схемы каждой испытательной машины. Применительно к машинам с кривошипным возбуждением динамическая схема в самом общем случае может быть представлена в виде дискретной колебательной системы, изображенной на рис. 63, где l — жесткость образца или общая жесткость образца и других упругих элементов, соединяющих его с возбудителем Сч — жесткость динамометра — масса деталей возбудителя, участвующих в колебательном процессе, совершающая кинематически ограниченные перемещения с амплитудой, равной радиусу кривошипа тп2 — свободная масса на конце нагружаемой системы тз — масса зажимного устройства, сосредоточенная между образцом и динамометром Xj—Лз — динамические перемещения масс, отсчитываемые от их равновесного положения. Размерности этих обозначений зависят от вида возбуждаемых колеба-  [c.97]

Все указанное выше о стабильности режима испы- 0.8 таний при кривошипном силовозбуждении относится к машинам, в которых масса гпз невелика. Вместе с тем для крепления многих натурных деталей приходится прибегать к захватам, с массой которых нельзя не считаться, так как она существенно влияет на режим колебаний остальных сосредоточенных масс системы и участвует в нагружении элементов испытательных машин. В этих случаях невозможно избежать динамической тарировки силоизмерительных узлов или аналитического учета сил инерции массы гпз, поэтому нет необходимости стремиться к уменьшению этой массы и при выборе ее величины следует исходить из условий максимального повышения стабильности нагружения.  [c.105]

Конструктивная и динамическая схемы испытательных машин в основном предопределяются применяемым способом сило-возбуждения. Обоснованный выбор способа возбуждения нагрузок может быть произведен при конкретизации характеристик прочности и жесткости объектов испытаний и параметров режима нагружения. При испытаниях стандартных образцов из конструкционных металлов на усталость осевая деформация образца не превышает 0,1—0,5 мм. С учетом жесткости динамометра и элементов силового замыкания машины максимальное реализуемое перемещение активного захвата может быть ограничено  [c.147]

Испытания материалов на прочность. До настоящего времени промышленность выпускала машины, предназначенные для статических и усталостных испытаний образцов материала в нормальных условиях. За последние годы появилась необходимость испытывать материалы деталей на прочность при низкой и высокой температуре в условиях динамических нагрузок различного характера. Для этой цели разработан ряд машин, которые выпускаются серийно например, Ивановский завод испытательных приборов выпускает машины МУП-15Т и  [c.244]

К третьей группе (динамическая схема на рпс. 6, ) относят испытательные машины, возбудители колебаний которых передают динамическое усилие на испытуемый образец через промежуточную упругую систему, настраиваемую иа колебания с большим динамическим усилением, — резонатор.  [c.38]

Для сопоставления динамических характеристик испытательных машин необходимо знать усилия, действующие в упругих элементах соответствующих колебательных систем. Эти усилия могут быть выражены в виде произведения жесткости соответствующих элементов на их абсолютную деформацию. Такой метод расчетного определения усилий достаточно точен, так как в рассматриваемых испытательных машинах скорость задаваемой деформации значительно ниже скорости распространения ее в материале образца и элементов машины, и возможность возникновения в образце и элементах машины волновых явлений фактически исключается.  [c.39]


Датчики силы с упругими элементами применяют во многих испытательных машинах для статических и динамических измерений силы, действующей на испытуемый образец. При статическом градуировании такой силоизмерительной системы, установленной в испытательной машине, элементы колебательной системы машины остаются неподвижными, поэтому пос едэ-вательно соединенные испытуемый образец и упругий элемент датчика силы нагружаются одинаково и показания силоизмерителя полностью соответствуют нагрузке, приложенной к образцу. А во время работы машины, когда ее колебательная система находится в движении, показания силоизмерителя уже не соответствуют действительной нагрузке на образец, так как возникают дополнительные инерционные силы, действующие на упругий элемент датчика силы. В зависимости от соотношения масс и жесткостей колебательной системы машины, показания силоизмерителя могут быть как выше, так и ниже нагрузки на образце. Разность между фактической нагру-женностью образца Ро и упругого элемента датчика силы Рд составляет динамическую ошибку. Однако точность измерения динамической нагрузки с практической точки зрения удобнее характеризовать не абсолютной динамической ошибкой, а отношением (%) ее к усилию, действующему на образец  [c.39]

Фундаменты для испытательных машин 332—335 — Динамические испытания 334, 335  [c.559]

Многократное растяжение. Испытание заключается в многократных растяжениях испытуемого образца до разрушения (ГОСТ 261—67) на испытательной машине с частотой циклов 250, 300 или 500 в 1 мин. Показателем испытания является динамическая выносливость, характеризуемая количеством циклов до разрушения (трещины или разрывы) испытуемого образца.  [c.240]

К работам по динамике передач следует также отнести экспериментально-теоретическую часть диссертации бывшего аспиранта кафедры В. В. Шульца. Перед ним была поставлена задача выяснения причин преждевременного и аварийного выхода из строя передач винтовыми колесами в машинах для производства искусственного волокна. Им был спроектирован испытательный стенд для этих передач, работающий по схеме замкнутого потока мощности. Стенд был изготовлен на заводе им. К. Маркса. На основании произведенных теоретических исследований и эксперимента, поставленного на указанном стенде, было установлено, что причиной отмеченных выше дефектов работы винтовых передач явились нелинейные крутильные колебания, возникающие в валопроводе, сопровождающиеся разрывом контакта между поверхностями зубьев. В результате работы были даны практические рекомендации по уменьшению колебаний и предложен метод расчета привода, исключающий возникновение крутильных колебаний. Следует отметить, что для проведения динамических испытаний, а также для изучения поведения масляной пленки при ударах зубьев были разработаны оригинальные методы измерения и создана специальная аппаратура.  [c.8]

Как указано выше, работа по определению причин неисправностей обусловливает наибольшую долю активного времени обслуживания порядок ее проведения в дальнейшем будет рассмотрен дополнительно. Работа по определению причин неисправности, которая влечет за собой изъятие дефектной детали, модуля и т. д., характеризуется взаимодействием человека и машины. Техник по обслуживанию, получив определенную информацию о рабочих характеристиках аппаратуры, проверяет различные элементы аппаратуры до тех пор, пока не обнаружит местонахождения дефекта. В процессе этой работы техник использует технические руководства, испытательную аппаратуру, специальные инструменты и т. п., получая дополнительные сведения. Процесс проверки может быть выполнен в динамических или статических, в рабочих или нерабочих условиях. Обычно лучшие результаты дает определение  [c.58]

Различные условия (нагрузки, температура и др.), которые необходимо создавать при испытании моделей, натурных узлов обусловливают наличие экспериментальной базы, включающей боксы высокого давления, испытательные разрывные машины, одно- и двухкомпонентные вибростенды, динамические и специальные стенды по испытанию конструктивных узлов.  [c.399]

Машины испытательные — Монтаж 332—334 — Структура подачи энергии от источника к образцу 174 для динамических испытаний микрообразцов 168—171  [c.554]

Испытание на растяжение. Обычно цилиндрической формы образец с утолщениями по концам (для укрепления в захваты испытате.И)Пой машины) растягивается. В современных машинах (Цвик, Инстроп, MTS) скорость растяжения может изменяться в широких пределах от 0,003 до 3000 мм/мип. При больших скоростях деформации такое испытание считается динамическим (ударным). Большинство испытательных машин снабжено диаграммным аппаратом, записывающим кривую деформации (см. рис. 40 и 42), на которой можно найти интересующие величины прочности и иластичности (Ов, <Уа,ъ S, ), хотя деформационные характеристики (б, г )) или характеристики, связанные с малыми деформациями (Е, To.oi и др.), следует определять, измеряя деформацию непосредственно на образце (во время испытания или после его разрушения).  [c.77]

Установлен следующий ряд предельных нагрузок 0,02 0,05 и 0,1 МН (2 5 и 10 тс) при предельном значении частоты 50 Гц. Широкое распространение в испытательных машинах получили возбудители динамических нагрузок в виде механичесжих вибраторов, в которых используют силы инерции вращающихся неуравновешенных масс.  [c.193]

Фирма MTS (США) выпускает универсальные гидравлические и гидрорезонансные испытательные машины различной мощности — от 0,1 до 5 Мн (от 10 до 500 тс), предназначенные для проведения испытаний на статическое растяжение, сжатие и изгиб, на малоцикловую усталость, кратковременные или длительные испытания на ползучесть, усталостные испытания при постоянной амплитуде с различной формой цикла (синусоидальная, треугольная, трапецевидная и др.), усталостные испытания с программным изменением ам плиту-ды, среднего уровня напряжений и частоты, а также с изменением указанных параметров по случайному закону. Кроме того, машины оборудованы системой обратной связи и могут воспроизводить эксплуатационный цикл нагружения, записанный на магнитофонную ленту или перфоленту. При усталостных испытаниях всех видов осуществляют регистрацию скорости роста трещин, накопления усталостных повреждений и пластических деформаций и оценивают чувствительность металла к концентрации напряжений по динамической петле гистерезиса. Частота циклов может изменяться от 0,0000 1 до 990 Гц. Особенность компоновки машин этой фирмы — разделение на отдельные независимые блоки исполнительного, силозадающего и програм-мно-регистрирующего агрегатов.  [c.206]


Установка создана на основе сервогидравлической динамической испытательной машины типа Гидропульс , управляемой от ЭВМ, Испытания на установке проводятся методом плоского сжатия при скоростях деформации до 400 с и числом циклов нагружения до 40 с минимальной длительностью паузы 0,05 с.  [c.47]

Испытания под нагрузкой проводились на универсальной разрывной машине фирмы "Лозенгаузен" (с ценой деления 10 кг). Образцы устанавливались на испытательную машину с помощью специальных зажимов и подвергались ступенчато возрастающел у нагружению статическими нагрузками с измерением степени герметичности на каждой ступени нагружения. Динамические нагрузки в пределах от 0,1 до 0,5 Рр д давались при 2000 циклонов (Рраз разрушающая нагрузка для данного материала). При этом в течение 240 мин снижения давления не наблвдалось.  [c.99]

Важнейшее значение в теории машин имело развитие экспериментальных методов кинематического п динамического исследования машин и механизмов. Уже в первые годы Советской власти в лабораториях высших технических учебных заведений, во вновь созданных научно-исследовательских институтах, испытательных станциях начинают разрабатывать методы экспериментального определения кинематических и динамических параметров машин. В этот начальный период средства измерения строились на использовании механических принципов. С развитием электроники все шире стали применяться электрические методы измерения кинематических и динамических параметров машин. Уже перед Великой Отечественной войной начались работы по использованию тенаоэффекта длй регистрации различных механических величин.  [c.32]

При выбранной динамической схеме возможность испытательных машин удовлетворять перечисленным требованиям зависит главным образом от способов силовйзбуждения. Поэтому целесообразно охарактеризовать эти способы с позиций применимости их для программирования напряжений.  [c.59]

При инерционном силовозбуждении, широко используемом в стационарных испытательных машинах, программирование задаваемых напряжений может осуществляться путем раздельного варьирования двух динамических параметров либо степени неуравновешенности ротора вибратора, либо скорости его вращения. Первый способ программирования использован в машине обращенного типа (рис. 32) для испытания образцов на консольный изгиб [5]. Вектор нагрузки, вращающийся относительно оси образца О с постоянной скоростью йз, создается сложением центробежных сил Р двух грузов т, размещенных на концах одинаковых грузодержателей длиной L. С помощью шарнирного соединения грузодержатели могут изменять угловое взаиморасположение, поэтому программирование нагрузки сводится к программному изменению угла а. Для этого имеется специальная рычажная система, управляемая от плоского кулачка с помощью фрикционного планетарного механизма. Машина с таким способом силовозбуждения успешно эксплуатировалась.  [c.60]

Из сопоставления величин максимальных реализуемых перемещений активного захвата испытательной машины со значениями динамических перемещений, обеспечиваемых возбудителями [7], видно, что Динамйческие перемещения, развиваемые различными типами возбудителей, в десяти раз превышают величины перемещений нагружаемой системы машины. Используя различные кинематические схемы для увеличения развиваемых нагрузок, можно существенно уменьшить необходимую мощность возбудителей и тем самым снизить габаритные и весовые параметры испытательной установки.  [c.147]

Для некоторых испытательных машин с очень малым запасом возбуждаемых динамических перемещений применение податливого дин-амометра или образца не представляется возможным, поэтому условия, определяющие оптимальную работу индуктивных датчиков, оказываются невыполнимыми. В этих слу-  [c.182]

Облученные образцы вместе с необлученными контрольными образцами иепытывали на растяжение на машине МР-0,5 со специальными захватами с тензометрическими датчиками, позволяющими регистрировать усилие и деформацию образцов на двухкоординатном потенциометре типа ПДС. Для исключения влияния неоднородности материала определение предела прочности при изгибе и динамический модуль упругости измеряли на образцах, которые высверливали полой фрезой из половинок галтельного образца, оставшегося после испытания на растяжение. Предварительно была установлена допустимость такого рода испытаний на образцах, изготовленных из ранее разрушенного материала. При этом предел прочности при изгибе измеряли на настольной испытательной машине с максимальным усилием 30 кгс. Усилие прилагалось по центру образца длиной 40 мм и диаметром 6 мм, расстояние между юпорами составляло 30 мм. Динамический модуль упругости измеряли ультразвуковым методом. Из оставшихся после определения предела прочности при изгибе половинок образца нарезали образцы высотой 10 мм, на которых определяли предел прочности при сжатии.  [c.128]

Эту схему применяют в машинах, рассчитанных на весьма большие испытательные нагрузки. Например, она применена в машинах отечественного производства МП-800 с максимальной нагрузкой 8 МН при статическом и асимметричном динамическом нагружениях и нагрузкой 3 МН при испытаниях на усталось с симметричным циклом нагружения, а также в горизонтальной машине LHUS 400 фирмы MFL (ФРГ) с максимальной нагрузкой до 10 МН и нагрузкой 4 iVlH при симметричных циклах нагружения.  [c.33]

На рис. 6, б изображена динамическая схема испытательных машин второй группы, характеризующихся возбуждаемой динамической силой, передаваемой непосредственно на испытуемый образец. Для возбуждения этого усилия применяют, например, инерционные, электромагнитные, электро-гндравлические возбудители колебаний. Силовые схемы таких машин представлены на рис. 3, г и 4, а. Типичные представители этих машин — резонап-спые машины с электромагнитным возбуждением колебаний (см. рис. 4, а), применительно к которым элементы динамической схемы соответствуют mj + 2 — приведенной массе инерционных грузов 3, штока 4, якоря 10 и захвата И п R2 — соответственно жесткости и внутреннему сопротивлению материала скобы 5 Сд и — соответственно жесткости и внутреннему сопротивлению материала образца mg — захвату 12 и R — соответственно жесткости и внутреннему сопротивлению материала датчика силы 13] — суммарной массе станины /, колонн 2, верхней траверсы 6 с установленными на ней механизмами.  [c.38]

Для градуирования и поверки сило-измерителей высокочастотных машин для испытаний на усталость применяют контрольные образцы, выполняемые аналогично описанным выше, но с наклеенными на их поверхность тензорезисторными датчиками деформации. Датчики соединяют в мост Уитстона таким образом, чтобы в соседних плечах моста оказались рабочие и компенсационные датчики. Допустимые напряжения в контрольном образце выбирают достаточно малыми, чтобы обеспечить высокую жесткость образца и запас усталостной прочности для поверки силоизмернтеля машины на ее максимальных нагрузках. Для этой же цели может быть использован жесткий тензорезисторный динамометр. Мост датчиков образца или динамометра включают на вход прибора типа ИСДН (измеритель статических и динамических нагрузок). Прибор позволяет измерять нагрузку в заданной фазе деформирования контрольного образца или его деформацию в заданной фазе нагружения. Таким образом, он пригоден для поверки как силоизмерительных систем, так и систем измерения деформации (перемещения) в испытательных машинах. Структурная схема прибора ИСДН показана на рис. 13. а.  [c.540]


При изучении динамических характеристик стержневых конструкций 1важное значение имеет определение внутреннего трения в материале и внешнего аэродинамического трения. Именно эти виды трения определяют внутренние усилия и перемещения, возникающие в конструкции при дей- ствии динамических нагрузок. Экспериментальное исследование внутреннего и внешнего трения важно и для правильного расчета отдельных элементов резонансных испытательных и технологических машин, так как для них резонансный режим работы является рабочим.  [c.173]

По принципу действия основных (приёмных и отдающих) органов гидропередачи бывают объёмными, динамическими и смешанными —волновыми (например, передача Константинеско или гидропульсационные испытательные машины).  [c.420]

Производственную мощность ремонтного производства определяют по мощности основных цехов, в которых выполняются основные технологические операции ремонта и сосредоточена преобладающая часть основных фондов предприятия. Например, при расчете производственной мощности специализированного производства по ремонту двигателей учитывают такое оборудование моечные машины разборочно-очистного участка круглошлифовальные станки для обработки шеек коленчатого вала алмазно-расточные и хонинговальные станки для обработки цилиндров горизонтально-расточные станки для обработки коренных опор блока цилиндров средства для динамической балансировки деталей и испытательные стенды на слесарно-механическом участке комплект ок-расочно-сушильного оборудования на участке окрашивания.  [c.613]

Раарушенве, обусловленное возникновением пластического течения. Все. приведенные результаты основывались на допущении того, что материал сохраняет свой упругие свойства. Если же после прохождения пиковой точки на кривых (рис. 7.8) возникает пластическое течение, что, разумеется, вполне возможно, то способность оболочка оказывать сопротивление нагрузке будет падать даже быстрее, чем это показано на рис. 7.8, и разрушение будет носить еще бояее резкий характер. Упругость испытательной машины или ебседних элементов реальной конструкции, куда входит сжатая оболочка, также способствует усилению внезапности наступления разрушения, так как при зтом освобождается накопленная энергия. Но цилиндри.ческая оболочка должна нагружаться плавно и постепенно вплоть до пиковой точки с тем, чтобы не проявлялись динамические эффекты, а то, что будет происходить после этого, обычно не представляет особого интереса для практики.  [c.508]

Динамическое старение используют для упрочнения таких упругих элементов, как, например, трубка Бурдона для манометров из стали 50ХФА, измерительные витые пружины из стали 50ХФА для испытательных машин и др., что позволяет повысить надежность и класс точности приборов.  [c.699]


Смотреть страницы где упоминается термин Машины испытательные динамические : [c.211]    [c.148]    [c.58]    [c.108]    [c.137]    [c.248]    [c.7]    [c.92]    [c.157]    [c.542]    [c.549]   
Сопротивление материалов (1959) -- [ c.325 ]



ПОИСК



Машины испытательные

Фундаменты для испытательных машин 332—335 — Динамические испытания



© 2025 Mash-xxl.info Реклама на сайте