Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пассивные пленки состав

Созданию высокой химической активности в вершине трещины содействует и механический фактор. Как известно, механические напряжения в вершине трещины очень высоки. Даже при низких значениях интенсивности напряжений материал в вершине трещины находится под действием напряжений, близких к пределу текучести. Это создает благоприятные условия для прохождения в вершине трещины локальных деформаций, в результате чего на кромках ступеней сдвига (в местах выхода дислокаций на поверхность) плотность анодного тока может резко увеличиваться. Оба фактора не только способствуют повышению плотности анодного тока, но и содействуют в этом друг другу. Например, если структура и состав сплава таковы, что в нем имеются выделения по границам зерен, отличающиеся по электрохимическим характеристикам от матрицы, то потенциальная чувствительность к межкристаллитной коррозии может быть реализована путем прохождения в вершине трещины пластических деформаций, разрушения пассивной пленки и активации анодных процессов по границам зерен. Это же положение относится в полной мере и к сегрегациям внутри твердого раствора, когда суще-  [c.57]


По данным [466], пассивные пленки, образованные на нержавеющих сталях типа 18-8, 18-8-Мо и 18-8-Nb, удалось изолировать и определить их химический состав и структуру. Толщина пленок была 0,000025 мм. Пленки, образующиеся в результате действия воздуха или пассивирующих сред, имеют повышенное содержание кремния (—10—15%), несмотря на то, что содержание кремния в сталях не превышает 1% (табл. 171).  [c.487]

Ингибитор атмосферной коррозии черных металлов [1024]. Приведенный состав применяется для пассивации поверхностей черных металлов. На поверхности металла образуется пассивная пленка, обладающая высокой стойкостью к механическим повреждениям, электролитическому восстановлению и химическим воздействиям.  [c.157]

Позднее Н. Родин [74] изучил при помощи микрохимической методики состав металлических компонентов пассивных пленок, отделенных от поверхности нержавеющих сталей. Пассивные пленки после отделения высушивали без доступа воздуха, а затем анализировали. Основные результаты исследований показали, что в пассивных пленках наблюдается понижение содержания Fe по сравнению с его содержанием в силаве. Значительно возрастает (в 5—10 раз) содержание таких легирующих элементов, как кремний, молибден. Оказалось, что состав пассивных пленок зависит не только от состава сплава, но и от состава коррозионной среды и времени выдержки в коррозионном растворе. На рис. 24 приведены данные, показывающие влияние состава сплава на содержание легирующих элементов в пленке после пассивации образцов из экспериментальных сталей следующего состава 0,02% С, 17% Сг, 13% Ni, 2% Мо с переменным количеством Si от  [c.40]

В качестве химического защитного покрытия для многих металлов применяется также хроматирование. На черных металлах этот процесс непосредственно неосуществим и хроматирование погружением производится только после фосфатирования. Пассивность поверхности металла препятствует формированию хроматной пленки. Для устранения пассивности в состав ванн вводятся до-бавки активаторов, например С1 . Последние содержат соединение шестивалентного хрома и минеральную кислоту, причем Сг + частично восстанавливается выделяющимся водородом. Пленка содержит смесь окиси хрома, трехокиси хрома и окисла металла. Величина pH раствора зависит от стойкости подлежащего удалению с поверхности окисла металла.  [c.157]

Состав растворов для пассивирования цинка и режимы обработки приведены в табл. 38. Качество пассивной пленки определяют по ее внешнему виду. Цвет пленки может изменяться от светло-желтого до розоватого и фиолетового. Коричневый цвет пленки свидетельствует о низкой качестве ее защитных свойств.  [c.107]


ЗАКОНОМЕРНОСТИ ПАССИВАЦИИ ТИТАНА. СОСТАВ И СТРУКТУРА ПАССИВНЫХ ПЛЕНОК  [c.34]

Исходя из изложенного, предполагается, что невозможность обычной кислородной резки высоколегированных хромистых и хромоникелевых сталей объясняется тем, что после первого мгновенного окисления на поверхности начального участка образуется пассивная пленка окиси хрома. В этой пленке содержание окиси хрома будет приблизительно соответствовать содержанию хрома в стали, т. е. в большинстве случаев состав-  [c.7]

Образующиеся при этом коллоидные взвеси обладают характерными свойствами гелей и подобно высокомолекулярным органическим поверхностноактивным веществам адсорбируются на металле и в таком случае существенно влияют на структуру и свойства электролитических осадков. Устойчивость и состав катодных пассивных пленок зависят от многих факторов и в том числе от ионного состава электролита и его изменений в процессе электролиза. Так, например, пря-  [c.158]

Коррозия в атмосфере пара особенно опасна. Введение в состав стали хрома и кремния, способствующих образованию весьма прочных защитных пленок, увеличивает жаростойкость сталей. Хром сообщает стали пассивность. Углеродистые и низколегированные хромомолибденовые стали мало отличаются друг от друга коррозионной стойкостью в присутствии кислорода. Сера ухудшает стойкость сплавов на основе железа) против коррозии.  [c.24]

Стальные образцы после их коррозии в сероводородной воде имели небольшое количество язв, но значительное количество вздутий их поверхность была покрыта темной, плотно прилегающей к металлу пленкой сульфидов железа. Некоторые исследователи считают, что сульфиды железа играют роль замедлителя коррозии на начальных стадиях коррозионного процесса стали в сероводородной воде, а на более поздних стадиях, наоборот, делаются активатором этого процесса. Существует объяснение пассивности стали при взаимодействии с концентрированными растворами H2S, согласно которому химический состав пленки различный при различных концентрациях H2S считают также, что при высоких концентрациях возможно образование полисульфидов.  [c.22]

Состав электролита, и в особенности характер аниона, существенно влияют на скорость анодной реакции. Анион может либо нарушать пассивное состояние (в результате разрушения окисных пленок или адсорбционного вытеснения кислорода с поверхности металла), либо способствовать наступлению пассивности вследствие специфической адсорбции, или залечиванию дефектных мест в окисных пленках.  [c.65]

Низкое качество мажеф — следствие неудачно выбранного метода и технологии его промышленного изготовления. Немаловажное значение для регламентирования качества этого препарата имеет также [36] и принятый для него стандарт. Согласно ГОСТу 6193—52, в состав мажеф, кроме фосфата марганца, должен входить фосфат железа. Однако валентность железа не оговорена. Содержание железа должно быть в пределах 0,3—3 о, а марганца — не менее 14%. При столь широком диапазоне в содержании железа и отсутствии верхнего предела для марганца облегчается нарушение соблюдения оптимального соотношения в препарате между фосфатами железа и марганца (1 10—1 15). Отсутствие в ГОСТе указания на валентность железа в фосфате усложняет требование обязательного присутствия в мажефе фосфата железа (II) в виде водорастворимого первичного соединения. С целью повышения качества препарата должно быть предусмотрено содержание в нем 2,0—4% фосфата железа (II), а марганца не ниже 17%. Общая кислотность 3% раствора должна быть не ниже 29 точек . Не допускается наличия в препарате соединений А1, Си, Аз и РЬ. Содержание водорастворимых сульфатов должно быть по возможности исключено и не превышать 0,05%, считая на сульфат-ион. Особо следует оговорить минимально допустимое содержание в препарате хлоридов. Как показали исследования [46], присутствие в растворе хлоридов препятствует образованию фосфатной пленки и наступлению пассивности металла. Устранение отмеченных недостатков должно способствовать повышению качества отечественного препарата.  [c.132]

Для создания устойчивого пассивного состояния требуется соблюдение определенных условий при пассивировании (состав пассиватора, температура). С повышением температуры для создания пленок с хорошими защитными свойствам требуется увеличить концентрацию пассиватора.  [c.82]


Рассматривая в совокупности изложенные выше представления о соответствующем балансе между электрохимической активностью и пассивностью, можио считать, что локализованная коррозия возникает различными путями и является следствием проявления ряда различных механизмов, вызывающих коррозионное растрескивание. Если структура и состав сплава таковы, что в нем имеются непрерывные области сегрегации или выделений (обычно по границам зерен), отличающиеся по электрохимическим характеристикам от матрицы, тогда потенциальная чувствительность к межкристаллитной коррозии (МКК) может быть под действием механических напряжений реализована в межкристаллитное разрушение. В том случае, когда предварительно существующие активные участки находятся в пассивном состоянии, тогда деформация может активизировать их за счет разрушения защитной пленки и, возможно, за счет растворения возникающих ступенек сдвига, обладающих повышенной электрохимической активностью. В последнем случае решающая роль напряжений или деформации проявляется для таких сплавов, которым присуща недостаточная пластичность и склонность к хрупкому разрушению. Энергия, необходимая для хрупкого разрушения, может быть уменьшена за счет или адсорбции специфических компонентов, или образования хрупких фаз в вершине трещины, или внедрения водорода в решетку впереди вершины развивающейся трещины. Предполагают, что эти три различных механизма коррозионного растрескивания должны рассматриваться как протекающие непрерывно с постепенным переходом от одного механизма к другому, поскольку постепенно над коррозионным процессом начинают преобладать процессы, обусловленные действием напряжений или деформации. Переход от одного механизма к другому может быть следствием изменения или характеристик самого сплава, или условий внешней среды.  [c.231]

Часто считают, что коррозионная среда, вызывающая коррозионное растрескивание, должна обладать весьма специфическими свойствами. Одиако перечень таких сред, вызывающих растрескивание различных сплавов, продолжает увеличиваться и понятие специфичность раствора не является сейчас таким узким, как это было даже десять лет тому назад. Тем не менее ясно, что коррозионная среда, вызывающая растрескивание, специфична в том смысле, что не все возможные коррозионные среды способствуют растрескиванию и объяснения специфичности коррозионных сред обычно базируются на электрохимии коррозионного растрескивания. В общих чертах ясно, что необходимы сильно действующие растворы для поддержания системы на границе пассивно-активного состояния, так как сильно агрессивные условия будут вызывать общую или питтинговую коррозию, в то время как в совершенно пассивном состоянии коррозионное растрескивание происходить не будет. Относительная инертность всех подвергаемых коррозионному воздействию внешней среды поверхностей (за исключением вершины трещины) иногда является следствием наличия пленки, образуемой благородными металлами, входящими в состав сплавов, но для основного большинства промышленных сплавов пассивность поверхностей, подвергаемых воздействию коррозионных сред—результат присутствия окисных пленок иа поверхиости металлов. Поэтому ясно, что для коррозионного растрескивания сплавов с высоким сопротивлением общей коррозии (сплавы на основе алюминия, титаиа, аустенитные нержавеющие стали, на которых легко образуется защитная пленка) необходимо воздействие агрессивных ионов (таких, как галоиды). Для коррозионного растрескивания металлов с низким сопротивлением общей коррозии, таких как углеродистые стали или сплавы на основе магния, необходимо присутствие коррозионной среды, которая сама по себе являлась бы частично пассивирующей. Таким образом, углеродистые стали могут быть чувствительными к растрескиванию в растворах анодных ингибиторов,  [c.236]

Наибольший интерес представляют углеродистые стали с добавкой хрома, который значительно повышает коррозионную стойкость материала. Хром относится к самоПассивирующим материалам. Вследствие пассивации хрома, входящего в состав сплава, на поверхности последнего образуется пассивная пленка (защитный слой оксидой nim адсорбированного кислорода), существенно повышающая коррозионную стойкость сплава. Установлено, что для образования нержавеющей стали минимальное содержание хрома (по весу) Должно быть не ниже 13-15 %. Стали, содержащие 36 % хрома, приобретают коррозионную Стойкость даже в таких агрессивных средах, как царская водка. Однако в неокисляющихся агрессивных средах заищтная пленка на поверхности хромистых сталей не образуется, поэтому в растворах серной и соляной кислот такие стали активно корродируют.  [c.39]

Состав пассивных пленок на нержавеющих сталях и термосилиде  [c.150]

Учитывая сложный состав пассивной пленки, М. Нагаяма и М. Коэн рассчитали ее толщину для железа в зависимости от потенциала предварительной анодной поляризации в пассивной области и получили значение от 10 А для потенциала —0,31 в до 30 А для потенциала -f-1,09 е.  [c.25]

Удалось установить [74] определенную связь между составом пленки и ее защитными свойствами. Указанные выше стали подвергали коррозионным испытаниям в 10%-ном растворе РеВгд при 25° С в течение 150 час. Соответствующие данные о составе пассивных пленок после испытаний и скорости коррозии приведены на рис. 25. Можно отметить интересные изменения в составе иленки примерно 25% Si в пассивной пленке в процессе коррозионных испытаний заменяются Мо. В результате создается поверхность, обладающая высокими защитными свойствами. Наибольшее повышение содержания кремния в нленке и наибольшая скорость обогащения пленок молибденом в процессе коррозии наблюдаются у сплавов, содержащих 1—2% Si, и это количество кремния будет самым эффективным. Дальнейшее повышение содержания Si оказывает значительно меньшее влияние на улучшение коррозионной стойкости сплава, что подтверждается коррозионными данными. Состав пленки для сплава с 2% Si после  [c.40]


В работе [143] изучали состав пассивных пленок методом рентгеновской фотоэлектронной спектроскопии на сплавах Fe—Сг (9,7 12,5 14,7 20,4 50 и 79,7 ат. % Сг). Пленки получали выдержкой при потенциалах 100 и 500 мВ н.к. э.) в 1 М. H2SO4, насыщенной азотом. При потенциале— 500 мВ на сплавах 9,7 12,5 50% Сг поверхностный слой соответствовал составу сплава. Пленки, образованные при 100 и 500 мВ, были обогащены хромом, причем состав слоя металла, следующего за пассивной пленкой, соответствовал составу объемного сплава (рис. 51). Это свидетельствует о том, что обогащение хромом происходит вследствие преимущественного растворения железа.  [c.149]

При изучении влияния Мо на электрохимическое поведение было установлено, что Мо снижает ток пассивации (1 % Мо уменьшает ток пассивации на порядок величины). У сталей с Мо потенциал пассивации несколько смещается в отрицательную область, ток в пассивиом состоянии уменьшается. Время самоактивации увеличивается, потенциал питтингообразования смещается в положительную сторону по сравнению со сталями, не легированными Мо. Таким образом молибден существенно улучшает пассивируемость нержавеющих сталей. В связи с этим в последние годы интенсивно изучается состав пассивных пленок на сталях с молибденом.  [c.151]

Вопрос (Уоддамс). В течение 1950—1951 гг. Эванс и его сотрудники в Кэмбридже доказали влияние ионных дефектов в пленках из окиси железа на их способность вступать в химические реакции. В частности, было показано, что пассивные пленки содержали в себе минимум анионных дефектов. В какой мере Коломбье полагает, что легирующие элементы и элементы, входящие в состав примесей, влияют на концентрацию этих дефектов в окисных пленках на нержавеющей стали и воздействуют на их защитные свойства До сих пор не было опуб-182  [c.182]

На свойства оксидной пассивной пленки на титане сильно влияет анионный состав электролита. Например, при одинаковых потенциалах были сформированы пассивные пленки в растворах серной и соляной кислот. Потом образцы переносили в 10 н. H2SO4 при 40 °С и определяли время самоактивации  [c.37]

Имеется много фактов, подтверждающих рассматриваемую модель растворения пассивного титана. Действительно, одинаковый структурный состав барьерных слоев, образующихся при различных потенциалах, не позволяет объяснить значительное снижение анодных токов (почти на 2 порядка), наблюдаемое при повышении потенциала от 0,14 до 1,4 В (см. рис. 2.12), изменением скорости растворения этих слоев. На это указывает также и относительно незначительное увеличение химической стойкости пассивных пленок, сформированных при различных потенциалах, что оценивается по времени их самоактивации (см. выше). Основная причина снижения стационарных анодных токов — уменьшение ионной проводимости пассивных пленок вследствие снижения их дефектности. Можно полагать, что дефектность пленок уменьшается с ростом потенциала до некоторого значения ( =1,4 В), после чего меняется несущественно. Перегиб кривой (см. рис. 2.12) происходит вблизи равновесного ноте1щиала кислородного электрода. Очевидно, по мере приближения потенциала титана к равновесному кислородному, количество адсорбированного кислорода (в виде ионов 0Н или 0 ) возрастает. Это, по-видимому, и является причиной уменьшения дефектности пленок, и, как следствие, снижения тока растворения титана.  [c.43]

I По достижении хорошо известной границы содержания хрома в 12% на стали образуется защитная пассивная пленка. Характерным для этой пленки является то, что она разрушается в отдельных местах поверхности стали главным образом ионами хлора. Это ведет к точечной коррозии (например, в морской воде). И хотя приток кислорода как деполяризатора еще оказывает решающее влияние на скорость точечной коррозии, локализация этого вида разрушения i зависит и от химической и структурной неоднородности, т. е. от гетерогенности стали. Соответственно нержавеющие стали, не являющиеся гомогенными (например, в результате медленной кристаллизации в слитке или термообработки в области температур от 400 до 900° С), проявляют гораздо большую склонность к точечной коррозии, чем гомогенные стали. Если же скорость коррозии упра-вляется реакциями, протекающими непосредственно на поверхности металла, то и состав и структура оказывают значительное влияние, проявляющееся и при небольшом различии в составе или металлургической истории стали. Классическая нержавеющая сталь 1Х18Н9, если ее быстро охладить от температуры растворяющего отжига (от 1050 до 1150° С), представляет собой однофазный гомогенный сплав с гранецентрированной кубической решеткой аустенита. Если такую сталь с низким содержанием углерода подвергнуть нагреву в течение нескольких часов при 600° С, аустенит частично превратится в феррит с объемноцентрированной кубической решеткой. Феррит, образующийся в результате такого диффузионного превращения, богаче хромом и беднее никелем по сравнению с аустенитом. Это способствует развитию большей склонности стали к структур-  [c.24]

По адсорбционной теории считается, что не только кислород, но и многие другие вещества хемосорбируются на сплавах Сг—Fe, содержание легирующего компонента в которых выше критического, соответствующего пассивации. Если состав сплава ниже критического, то эти вещества реагируют с образованием пленки, не имеющей защитных свойств. Способность сплава к образованию адсорбционной пассивной пленки или пленки продуктов реакции зависит от электронной конфигурации в поверхностном слое сплава, особенно от взаимодействия -электронов. Теория электронной конфигурации описывает критические составы сплавов, которые соответствуют благоприятной электронной конфигурации, способствующей хемосорбции и пассивности. Когда -энергетический уровень заполнен электронами (как в металлах непереходных групп), сплав более склонен реагировать с образованием окислов, чем хемосорбированных пленок, но такие окислы, как говорилось ранее, по-видимому, не являются главной причиной коррозионной стойкости.  [c.75]

Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции + + 2ё Ti составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует TiOj. Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Ti , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией.  [c.372]

Титан — химически активный элемент, но вследствие образования на его поверхности защитной весьма плотной и однородной пленки, химический состав которой зависит от окружающей среды и условий образования (чаше всего пленка рутиловая—TiOj), он становится пассивным. Защитная пленка делает титан более стойким, чем нержавеющая сталь, во многих агрессивных средах, в том числе в разбавленной серной кислоте, царской водке, разбавленной и концентрированной, но не дымящей азотной кислоте. Технически чистый титан особенно стоек по отношению к действию морской воды. Опыт (с пересчетом) показал, что за 4000 лет лист титана разрушится на толщину бумажного листа. Легирование титана молибденом, цирконием, ниобием приводит к образованию еще более стойких защитных пленок.  [c.324]


Сопоставление анодных кривых сталей и компактных металлов (Мо, VI, А/1, Си, Рс1 и Ви) дает возможность судать о механизме действия этих добавок. Сделано заключение, что устойчивость высокохромистой стали к питтинговой коррозии может быть повышена при легщ)овании ее элементами, образующими кислородсодержащие соединения, т.е. при вхождении этих элементов в состав пассивной оксидной пленки на поверхности стали или в раствор электролита в виде анионов типа МеО ".  [c.28]

Пассивное состояние металлов вызывают обычно окислительные процессы, протекающие вследствие наличия в растворе окислителей — пассиваторов (например Ог, НЫОз, КгСггО и др.) или вследствие анодной поляризации металла и образующие на поверхности металлов адсорбционный слой кислорода или защитную окисную пленку. Пассивность металлов зависит как от внутренних факторов, связанных со свойствами металлов (состав и структура, состояние поверхности и др.), так и от внешних факторов, связанных со свойствами электролита (его состав, концентрация и т. д.), а также от внешних условий, при которых металл взаимодействует с электролитом (температура, движение раствора, наложение постоянного тока и т. д.).  [c.87]


Смотреть страницы где упоминается термин Пассивные пленки состав : [c.40]    [c.149]    [c.147]    [c.148]    [c.357]    [c.31]    [c.151]    [c.171]    [c.218]    [c.63]    [c.16]    [c.203]    [c.114]    [c.152]    [c.71]    [c.18]    [c.5]    [c.131]    [c.212]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.148 ]



ПОИСК



Закономерности пассивации титана. Состав и структура пассивных пленок

Пассивная пленка

Пассивность



© 2025 Mash-xxl.info Реклама на сайте