Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Защитные пленки магнии

Разбавленные щелочи даже при повышенных температурах (кипения) вызывают ничтожную коррозию магния. Нейтральные и щелочные растворы фтористых солей не агрессивны вследствие образования на поверхности магния прочной нерастворимой защитной пленки. Магний и его сплавы устойчивы по отношению к спиртам (за исключением метилового), керосину, бензину (обычному и высокооктановому), фреону, фенолу и минеральным смазочным маслам.  [c.432]


Окисная пленка магния (MgO) не обладает защитными овойствам.и (как пленка АЬОз ма алюминии), так как ее плотность 3,2 г/см — значительно выше плотности магния, поэтому она растрескивается. С повышением температуры скорость окисления магния быстро возрастает и выше 500°С магний горит ослепительно ярким светом.  [c.596]

СОЛИ В ПРИРОДНЫХ ВОДАХ. В природных пресных водах содержатся растворенные соли кальция и магния, концентрация которых зависит от происхождения и расположения водоема. Вода с высокой концентрацией этих солей называется жесткой, с низкой — мягкой. Мягкая вода обладает большей коррозионной активностью, чем жесткая. Это было обнаружено за много лет до того, как удалось выяснить причину данного явления. Например, оцинкованные баки для горячей воды в Чикаго служили 10—20 лет (в воде оз. Мичиган содержится 34 мг/л Са , 157 мг/л растворенных веществ), в то время как в Бостоне (5 мг/л Са , 43 мг/л растворенных веществ) такие баки выходили из строя через 1—2 года. В жесткой воде на поверхности металла естественным путем откладывается тонкий диффузионно-барьерный слой, состоящий в основном из карбоната кальция СаСОд. Эта пленка дополняет обычный коррозионный барьер из Ре(0Н)2, уже упоминавшийся в начале главы, и затрудняет диффузию растворенного кислорода к катодным участкам. В мягкой воде защитная пленка из СаСОд не образуется. Однако жесткость воды не единственное условие возможности образования защитной пленки. Способность СаСОд осаждаться на поверхность металла зависит также от общей кислотности или щелочности среды, pH и концентрации растворенных в воде солей.  [c.120]

В растворах, содержащих >2 % HF. Образуется защитная пленка фторида магния. На границе раздела вода—воздух может  [c.355]

Зарождение трещин в металле при наложении растягивающих напряжений обычно происходит в средах, которые вызывают локализованную коррозию. Образование первичных трещин может быть связано с возникновением туннелей (порядка 0,05 мкм) или с начальными стадиями зарождения питтингов. Всевозможные нарушения кристаллического строения (границы зерен, включения, дислокации), риска, субмикроскопические трещины в металле или на защитной пленке могут стать местами зарождения трещин и значительно повышать склонность к КР. Интенсивная коррозия металла на отдельных ограниченных участках поверхности напряженного металла, испытывающего растягивающие напряжения, может привести к образованию очень узких углублений, величина которых может быть соизмерима с межатомными расстояниями. Отмечается, что существует критический потенциал КР, отрицательнее которого КР не будет происходить. Например, критический потенциал КР стали типа 18-8 в кипящем хлориде магния составляет — 0,14 В. При более положительных потенциалах (анодная поляризация) происходит  [c.67]


В обоих случаях защищаемая конструкция подвергается катодной поляризации, которая смещает ее потенциал к отрицательным значениям, а pH электролита, контактирующего непосредственно с металлом, сдвигается в щелочную область. Благодаря высокому pH на поверхности металла осаждаются гидроокись магния, карбонаты кальция и магния, образуя пленку подобно накипи. Эта пленка экранирует металлическую поверхность и затрудняет диффузию кислорода. Плотность защитного тока можно уменьшить за счет увеличения толщины защитной пленки.  [c.66]

СОЛИ магния, например, способствует образованию защитных пленок из карбонатов на поверхности цинка. Поэтому в речной воде скорость коррозии цинка с течением времени уменьшается быстрее, чем в дистиллированной.  [c.113]

Магний корродирует в неорганических кислотах с водородной деполяризацией. Исключение составляет фтористоводородная кислота, образующая на поверхности магния защитную пленку из фторида магния, которая предотвращает дальнейшее растворение магния. Местная коррозия возникает только при низкой концентрации кислоты. Устойчивость магния к фтористоводородной кислоте делает его подходящим материалом для изготовления емкостей для хранения концентрированных растворов этой кислоты.  [c.135]

Водные растворы солей в зависимости от их состава и величины pH оказывают различное коррозионное действие на магний и его сплавы. Растворы, содержащие ионы хлора, вьь зывают более значительную коррозию, чем растворы с сульфат-или нитрат-ионами, так как на металлической поверхности образуется очень пористая пленка. Магний и его сплавы, за исключением специальных сплавов с высоким содержанием марганца, корродируют в морской воде. При одинаковом содержании хлорида натрия скорость коррозии в морской воде значительно выше, чем в чистом растворе хлорида натрия из-за наличия в морской воде агрессивных сульфат-ионов. Нейтральные и щелочные растворы фторидов не агрессивны по отношению к магнию и его сплавам вследствие образования защитной пленки.  [c.135]

С обычной водой магний почти не взаимодействует благодаря образованию защитной пленки. Однако поведение магния в этом случае зависит от характера и количества содержа  [c.136]

Если к раствору хлористого натрия добавить бикарбоната, процесс коррозионного растрескивания начинает развиваться [111,212]. То же самое происходит и при травлении в щелочи, приводящем к разрушению защитной пленки. В этом случае время до разрушения образцов может уменьшаться от нескольких суток до часов и даже минут [ГП,212]. Влияние катионов и pH на интенсивность коррозионного растрескивания алюминия с концентрацией 7% магния иллюстрируется данными табл. 111-44 [111,212].  [c.208]

При тех же условиях с учетом облучения стойкость магния и циркония неудовлетворительна, что объясняется их склонностью к образованию окислов и гидратов. На образцах магния появляется сравнительно толстая защитная пленка окисла, что обусловливается по-видимому, незначительными количествами воды и кислорода, растворенными в теплоносителе. При испытании циркония образующийся при разложении теплоносителя водород диффундирует внутрь металла, образуя гидриды.  [c.312]

Защитные пленки, создаваемые на металле путем превращения поверхностного слоя металла в химические соединения. Наиболее распространенными являются оксидные и фосфатные пленки. Образование оксидных пленок (оксидирование) достигается путем химической и электрохимической (анодной) обработки поверхности черных металлов, меди, магния, алюминия. Фосфатные пленки получают на поверхности черных металлов путем химической обработки (фосфатирование) смесями фосфорнокислых соединений. Не,металлические пленки используются для защиты от атмосферной коррозии, а также как грунт при последующем нанесении на поверхность деталей лакокрасочных покрытий.  [c.326]


Магний является химически активным металлом образующаяся на воздухе оксидная пленка М 0 в силу более высокой плотности, чем у самого магния, растрескивается и не обладает защитными свойствами магний в виде порошка, стружки или пыли легко воспламеняется при контакте расплавленного или горячего магния с водой происходит взрыв. Магний и его сплавы плохо сопротивляются коррозии, обладают пониженной жидкотекуче-стью при литье, пластически деформируются лишь при повышенных температурах (225 С и более). Последнее обусловлено тем, что сдвиг в гексагональной решетке магния при низких температурах осуществляется лишь по плоскости базиса (основание шестигранной призмы). Нагрев до 200—300 °С  [c.177]

Особое место занимают покрытия, получаемые химической и электрохимической обработкой. Они превращают поверхностный слой изделия в химическое соединение, образующее сплошную защитную пленку. Наибольшее распространение имеют оксидные и фосфатные защитные пленки. Нанесение оксидных пленок называют оксидированием, а на стали—воронением. Для воронения стали детали погружают в растворы азотнокислых солей при температуре 140 °С. Фосфатные покрытия наносятся при погружении в разбавленный раствор фосфорной кислоты и кислого фосфата цинка или магния. В результате на поверхности детали образуется плотная пленка фосфатов железа.  [c.175]

Магний неустойчив против коррозии. При повышении температуры он интенсивно окисляется. При этом оксидная пленка магния (MgO) не обладает защитными свойствами (как пленка Al Og на алюминии), так как ее плотность значительно выше плотности магния, поэтому она растрескивается. С возрастанием температуры скорость окисления магния резко возрастает и выше 500 °С магний самовоспламеняется. Поэтому при использовании магния и его сплавов, особенно при разливке, следует принимать меры против его окисления и воспламенения. Порошок, тонкая лента, мелкая стружка магния представляют большую опасность, так как возгораются на воздухе при обычных температурах, горят с вьщелением большого количества теплоты и излучением ослепительно яркого света.  [c.212]

Таблица 3.1 дает общую приближенную характеристику. В зависимости от условий эксплуатации устойчивость металла может в значительной степени меняться. Например, в растворах азотной кислоты алюминий и хром устойчивее меди. А в растворах щелочей магний более стоек, чем алюминий или цинк, что объясняется образованием поверхностных защитных пленок.  [c.35]

Изменение pH раствора может оказать влияние также и на анодные процессы. По мере увеличения pH растворимость гидроокисей некоторых металлов уменьшается (железо, кадмий, магний), а других — увеличивается (алюминий, цинк, свинец). Поэтому свойства продуктов коррозии, образовавшихся в растворах с различным значением pH, разные. Для некоторых металлов наблюдается образование в щелочных растворах защитных пленок, для других в этих же условиях происходит их разрушение.  [c.104]

Скорость коррозии при высоких pH (в растворах щелочей) харак-теризуется растворимостью продуктов коррозии. Если гидраты алюминия, цинка и свинца в едких щелочах достаточно легко растворяются и металл теряет защитную пленку, что приводит к резкому увеличению скорости коррозии, то железо, никель, кадмий и магний в средах с высоким pH не дают растворимых комплексных соединений, в связи с чем становятся более коррозионностойкими. Вследствие этого коррозия стали с увеличением pH уменьшается и при pH = = 13 скорость коррозии практически равна нулю независимо от концентрации растворенного кислорода в жидкой среде. Однако при высоких температурах и высоких концентрациях щелочей коррозия стали активизируется за счет возникновения растворимых комплексных соединений (ферратов).  [c.19]

Следовательно, падение концентрации кислорода в щели не является причиной повышенной коррозии магния. Очевидно, все дело в том влиянии, которое оказывает восстановленный водород. Пузырьки водорода, выделяющиеся в щели, сильно перемешивают электролит, что способствует, с одной стороны, отводу продуктов анодной реакции (процесс на магнии обычно определяется диффузионными возможностями) и, с другой, разрушению существующих на магнии защитных пленок.  [c.245]

Железо — никель, сплавы 221 Защитные покрытия 45 из кадмия 295 олова 291 цинка 292, 1294 Защитные пленки на иттрии 313 магнии 271 меди 281 свинце 288 цинке 293 Золото 319  [c.355]

Процессы, идущие с ускорением, характеризуются кривой типа III. Ускорение коррозии может явиться следствием разрушения защитных пленок, увеличения числа катодных участков за счет вторичного осаждения или обнажения в процессе растворения, а также при повышении температуры, вызванном коррозией. В некоторых случаях наблюдается начальный период индукции, когда скорость коррозии очень мала. Такой тип зависимости коррозия — время наблюдается при взаимодействии многих металлов с кислотами, алюминия со щелочью, магния с растворами солей.  [c.44]

Приведенные сопоставления влияния pH на скорость коррозионного растрескивания сплава и на скорость коррозии магния позволяют сделать вывод, что в данном случае механизм влияния pH раствора на скорость коррозионного растрескивания и механизм влияния pH на скорость обычного коррозионного поверхностного процесса одинаков и связан с повышением стабильности защитной пленки на поверхности металла при переходе от кислой к щелочной области.  [c.127]

Для некоторых химически активных металлов, например для алюминия или магния, при анодной поляризации наблюдается не уменьшение скорости катодного процесса, а увеличение ее. Такое явление называется отрицательным дифференц-эффектом. Как было показано выше (гл. П1, 8), причиной его может быть образование неустойчивых ионов ненормально низкой валентности. Вместе с тем, анодная поляризация алюминия или магния может нарушить защитную пленку кислородных образований и этим открыть возможность самоокисления металлов за счет Н+ или НгО.  [c.180]


Сплавы магния МЛ4, M.II5 и др. (буква Л указывает на то, что сплавы. яитейпые) используют для получения отливок. Сваркой устраняют дефекты литья. Эти сплавы имеют повышенную склонность к образованию в швах горячих треш,ин, пор и усадочных рых-лот. Сплавы на основе магния активно окисляются на воздухе. Пленка собственных окислов магния на поверхности металла рыхлая и непрочная. Поэтому поверхность магниевых сплавов искусственно защищают пленкой из солей хромовой кислоты. По указанной причине перед сваркой с кромок и прилегающей поверхности основного металла (па ширину до 30 мм) травлением или механическим путем тщательно удаляют защитную пленку, окислы и другпе загрязнения. После сварки на поверхность сварного соедипопня вновь наносят защитную пленку.  [c.350]

Одним из методов борьбы с газовой коррозией меди и ее сплавов является легирование их магнием, алюминием, кремнием и др. Наиболее широко применяются при высоких температурах алюминиевые бронзы с содержанием алюминия до 10% и бернллневые бронзы (2,5% Ве). Эти бронзы жаростойки до 300° С. На латунях с содержанием цинка выше 20% образуется защитная пленка ZnO, которая при высоких температурах об-лада< т хорошими защитными свойствами.  [c.255]

Известно, что влияние природы и концентрации солей в водном растворе может быть различным. Влияние гидролизующихся солей зависит от того, повышают или понижают они pH среды при гидролизе. С увеличением концентрации таких солей растет кислотность или щелочность раствора и соответственно меняется скорость коррозии. Если растворенные в воде соли способствуют образованию труднорастворимой защитной пленки, то скорость коррозии металла уменьшается по сравнению с коррозией в воде. С увеличением концентрации соли этот эффект растет, но обычно до определенного предела. В этом плане равновесие между карбонатом, бикарбонатом и двуокисью углерода имеет определенное значение. Двууглекислые соли кальция или магния при разложении по реакции Са(НСОз i2 СаСОз + С02 + Н2О образуют осадок углекислых солей в виде защитного слоя на поверхности металла. В присутствии значительного количества СО2 в воде приведенная реакция идет в обратном направлении, осадок не выпадает, и даже ранее выпавший осадок может раствориться, и защитный слой разрушается.  [c.27]

Вода растворяет магний с образованием его гидроокиси, поэтому при изготовлении шлифов и при травлении нужно работать по возможности без воды. Если магний полируют с окисью алюминия в растворе ядрового мыла, он выглядит очень блестящим, серебристо-белым. При этом на поверхности остается, вероятно, защитная пленка , которая позволяет промывать шлифы водой. Тонкий защитный слой не оказывает влияния на последующее выявление структуры. Вначале образцы шлифуют со скипидарным маслом, причем целесообразно наносить его на поверхность из капельницы и распределять чистой тканью. Засохшее и превращенное в смолу скипидарное масло не допускает образования шлифовальной пыли и, следовательно, замазывания поверхности шлифа. Аналогичные результаты были получены Клеммом и Вигманном [1] при шлифовании таким способом других мягких металлов.  [c.284]

Наряду с железом и железными сплавами широкое применение в современной технике находят алюминий и его сплавы. Алюминиевые сплавы делят на две группы деформируемые и недеформируемые (или литейные). Наиболее распространены силумины и дюралюминий. Силумины содержат 10—13% кремния и небольшое количество магния и обладают хорошей коррозионной стойкостью из-за образования на их поверхности защитного слоя SiOj. Дюралюминий отличается высокими механическими свойствами наряду с легкостью. Изделия из этого сплава при равной прочности в два раза легче стальных. Коррозионная стойкость чистого алюминия во много раз выше, чем алюминиевых сплавов, в особенности сплавов, содержащих медь, железо и никель. Несмотря на то что алюминий имеет отрицательный потенциал (—1,67В), он является довольно коррозионностойким во многих средах в воде, в большинстве нейтральных сред и в сухой атмосфере. Такое поведение алюминия обусловлено его способностью к самопассивации. В зависимости от условий алюминий покрывается защитной пленкой разной толщины — от 150 до ЮООА, которая состоит из AljOj или AljOj  [c.72]

В общем случае коррозии с водородной деполяризацией увеличение концентрации водородных ионов смещает потенциал в сторону положительных значений и скорость коррозии повышается. В сильнокислых растворах, однако, кислота может выполнять роль окислителя и пассивировать металл, например железо пассивируется в концентрированной H2SO4 и олеуме. В других случаях кислота образует с металлом труднорастворимые соли, являющиеся защитными пленками так, магний устойчив во фтористоводородной кислоте вследствие образования Mgp2, а железо в фосфорной кислоте в результате образования Рез(Р04)2.  [c.24]

В пользу электрохимической гипотезы коррозионно-механического разрушения говорит большая локальная скорость растворения металла, которая выражается в высокой локальной плотности тока коррозии. По существующим в литературе оценкам ток коррозии ювенильной поверхности составляет 1 — 10 А/см , при наличии на поверхности того же металла оксидных пленок ток снижается до 10" — 10" А/см , т.е. до 9 порядков. Исследование з. ектродных потенциалов различных металлов в процессе образования ювенильных поверхностей непосредственно в электролите показало, что степень разблагораживания потенциала определяется свойствами защитных пленок. Чем выше защитные свойства, тем выше степень разблагораживания. Наибольшее смещение в отрицательную сторону потенциала по отношению к нормальному каломельному электроду отмечено у алюминия в 3 %-ном растворе Na I( до — 1,46 В), у магния — в растворе щелочи (1,19 В — 1,74 В). У железа, никеля и меди в 3 %-ном растворе Na I потенциал смещался соответственно от —0,47 до —0,6 В от — 0,17 до —0,51 В и от — 0,21 ДО —0,44 В. У ряда титановых сплавов нами получено смещение потенциала при зачистке поверхности, непосредственно в коррозионной среде от (—0,75) (— 0,90) В до (—1,24) -ь (-1,27) В.  [c.14]

Взаимодействие ингибиторов с металлом в условиях атмосферной коррозии изучалось по изменению во времени краевого угла смачивания, которое может служить показателем гидро фобизации поверхности и по величине так называемого барьерного эффекта , т. е. времени, необходимого для разрушения защитной пленки ионами меди. Для хромата циклогексиламина было установлено, что краевой угол смачивания металла дистиллированной водой возрастает со временем выдержки металла в контакте с ингибитором (рис. 2). Это увеличение достигает после трехмесячной выдержки 275% от краевого угла на чистом металле для стали. Для магния и меди эта величина уже после трех дней составляет 137%, а для цинка 120%.  [c.83]

Псевдосплавы Ti-Mg предназначены для для изготовления деталей узлов трения. Взаимодействие в системе Ti-Mg характеризуется образованием весьма ограниченных твердых растворов. При температуре 924К растворимость титана в магнии составляет 0,0025%, а при 1048К - 0,011% Предельная концентрация магния в титане составляет -1,5% Промежуточные соединения в системе отсутствуют. Смачивание титановой подложки жидким магнием хорошее, при температурах выше ЮООК краевой угол близок к 0°. Пропитка пористого титана магниевым сплавом приводит к существенному повышению прочности. Магний повышает работоспособность титаномагниевых псевдосплавов в узлах трения, выполняя функции смазки. В процессе трения на поверхности псевдосплавов формируется защитная пленка из магниевой составляющей, снижающая работу трения и предохраняющая от износа.  [c.127]


Следует отметить, что явление пассивности металов наблюдается не только в окислительных средах, но и в неокислительных. В этих условиях образуется защитная пленка не из окислов, а из нерастворимых солей или других соединений. Примером может служить молибден и ниобий, образующие пассивные пленки в растворах соляной кислоты, а магний — в растворах плавиковой кислоты (MgF,).  [c.486]

Важная роль среды обусловлена тем, что она может реагировать с продуктами катодного процесса. Железо часто покрывается гидроокисями и карбонатами магния и кальция, так как эти ионы обычно присутствуют в воде, содержащей СО2, и конечный продукт-представляет собой осадок из смеси извести и ржавчины, существенно тормозящий коррозию металла. При таких условиях требуемый для полной защиты поляризующий ток 2 будет уменьшаться его основной функцией станет восстановление повреждений в защитном слое осадка. Даже если взаимодействие с образованием, описанного выше осадка и не произойдет, увеличение щелочности в результате катодной реакции станет оказывать защитное действие,, даже если потенциал и не будет снижен до величины 2 (фиг. 65). Это доказывается с помощью соответствующей диаграммы Пурбэ. Как только поверхность металла покрывается защитной пленкой,, величина требуемого поляризующего тока снижается. Однако избыточная щелочность опасна, поскольку многие металлы образуюг растворимые оксианионы при высоких значениях pH.  [c.130]

Таким образом, в отличие от алюминия магний устойчив в растворах щелочей, а также аммиака (однако не при повышенных температурах). Окислительные анионы и особенно хроматы, бихроматы, а также фосфаты, способствующие образованию защитных пленок, сильно повышают коррозионную стойкость магния и его сплавов в воде и водных растворах солей. Магний и его сплав с марганцем стойки в жидких углеводородах, если они не содержат кислот и заметных количеств влаги. Принципиально возможно, например, изготовление самолетных бензобаков из спла-  [c.271]

Примечательна высокая стойкость магния во фтористоводородной кислоте, особенно при повышенных концентрациях (рис. 98), что определяется образованием на поверхности металла защитной пленки из нерастворимого в этих условиях соединения Mgp2. Однако попытка сделать насос для перекачки HF из магния не увенчалась успехом, по-видимому, вследствие невысокой механической прочности защитных пленок Mgp2 на магнии. Процесс коррозии магния даже в тех растворах, в которых он довольно стоек, сильно ускоряет наличие активных ионов и, в первую очередь, ионов хлора, например, в щелочных растворах хро-матов скорость коррозии магния значительно увеличивается при наличии в них ионов хлора.  [c.271]

Несмотря на большой отрицательный электрохимический потенциал бериллия (—1,85 В) и, следовательно, его высокую термодинамическую активность, бериллий, вследствие образования защитных пленок, довольно устойчив в атмосферных условиях. Его блестящая, серебристая поверхность лишь очень медленно тускнеет на воздухе. В этом отношении он похож на алюминий и магний, на которые несколько похож по внешнему виду и химическим свойствам. При нагреве бериллий, по сравнению с алюминием и магнием, гораздо лучше сохраняет свою прочность. При нагреве на воздухе до 400—500 °С бериллий окисляется очень слабо, при 800Х — достаточно быстро. С водородом заметно не реагирует, с азотом при высоких температурах образует нитриды ВезЫз. Холодная и горячая вода не оказывают на бериллий заметного воздействия. Стационарный потенциал бериллия в растворе 0,5 н. Na l равен пример-  [c.276]

На защищаемых катодах происходят образование защитных пленок, поляризационные и деполяризационные реакции и выделение водорода. Эти процессы зависят от состава электролита, состояния поверхности катода, соотношения размеров поверхности катода и анода и разности потенциалов местных анодов и катодов. Особое значение имеет состав электролита ибо катодные реакции сильно зависят от концентрации пленкообразующих ионов, электропроводности среды, концентрации деполяризаторов, а иногда от наличия ионов, проникающих через пленку. Наиболее важное значение имеет образование тех или иных защитных покрытий (пленок), состоящих преимущественаю из карбонатов и гидратов кальция и магния, освобождающихся на катоде под действием защитного тока.  [c.113]

Как уже было указано выше, весьма важной характеристикой защитных пленок является их теплостойкость. Одной из основных характеристик теплостойкости неорганических пленок является изменение их защитных свойств после нагрева. Оксихроматные пленки, полученные химическим путем, значительно снижают свои защитные свойства после нагрева выше 120 . Анодные пленки, полученные в щелочном электролите и состоящие в основном из гидроокиси магния, также выдерживают нагревы не выше этой температуры. Теплостойкость пленок изучалась в условиях нагрева при 300 в течение 100 час. и при 420°—15 час. В результате сравнительных коррозионных испытаний анодной пленки на сплавах МЛ5 и МЛ7 после прогревов и без прогрева во влажной атмосфере установлено, что свойства пленки после указанных прогревов не изменились.  [c.178]

Вопрос (профессор Шодрон). Как ингибитор коррозии магния фтор играет особую роль. Слой окиси магния может восстанавливаться в присутствии фтора. Надо отметить, что фтор легко диффундирует в твердые фазы. В контакте с металлом может образоваться иестехиометрическая (черная) окись магния с избытком магния. Может оказаться, что фтор вступит в реакцию с этой окисью магния с образованием нормальной окиси магния и фторида, в результате чего может образоваться защитная пленка. Также надо отметить, хотя это и выходит за пределы нашей темы, что в случае природной коррозии металлов в морской воде наблюдается защитное действие окиси магния, отлагающейся на катодах. Следовательно, эффект максимален при образовании доломита (двойной карбонат кальция и магния).  [c.52]


Смотреть страницы где упоминается термин Защитные пленки магнии : [c.261]    [c.279]    [c.89]    [c.52]    [c.202]    [c.247]    [c.626]    [c.109]    [c.326]    [c.87]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.271 ]



ПОИСК



Защитные пленки

Магний



© 2025 Mash-xxl.info Реклама на сайте