Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминий ионное легирование

Ионное легирование железа алюминием более эффективно чем хромом и никелем при равных концентрациях легирующих компонентов. При ионной имплантации алюминием образуется поверхностный сплав Fe, 6,6% А1, склонный к самопассивации и более стойкий к локальным формам коррозии, чем сплавы Fe, 6,6% Сг и Fe, 6,6% Ni, полученные также методом ионной имплантации.  [c.132]

Установлено, что ионное легирование алюминия молибденом увеличивает потенциал коррозии на 0,5 В и уменьшает в  [c.134]


Коррозионная стойкость алюминия и сплавов может быть повышена также ионным легированием гелием, неоном и тан-  [c.134]

Следовательно, легирование алюминиевого покрытия титаном и кремнием, способствующими появлению эффективных катодных присадок, позволяет получить покрытие на основе алюминия, которое характеризуется высокой коррозионной стойкостью в сероводородных средах, а также в присутствии ионов хлора.  [c.94]

Примеси замещения, введенные в металлы и сплавы Fe— Сг — Ni в количестве до 5 ат. %, также могут оказать значительное влияние на сопротивляемость сплава радиационному распуханию. В работах Джонстона и др. [187, 203] приведены результаты исследования радиационного распухания сплава Fe — 15 Сг — 20 Ni, легированного молибденом, алюминием, титаном, цирконием, кремнием, после облучения ионами Ni" с энергией 5 МэВ и в реакторе. Некоторые из них графически представлены на рис. 104. Видно, что введение титана, ниобия, кремния и циркония приводит к уменьшению распухания, причем цирконий подавляет распухание наиболее эффективно. Данные о влиянии молибдена неоднозначны легирование сплава молибденом приводит к увеличению распухания в условиях ионного облучения и к уменьшению при облучении в реакторе. Совместное легирование сплава кремнием и титаном подавляет распухание более эффективно, чем легирование каждым элементом в отдельности.  [c.176]

В чем же сущность этой технологии Напомним, что плазма — это ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Ионизация газа может произойти, например, при его нагреве до высокой температуры, в результате чего молекулы распадаются на составляющие их автоматы, которые затем превращаются в ионы. Плаз менная обработка (резка, нанесение покрытий, наплавка, сварка) осуществляется плазмой, генерируемой дуговыми или высокочастотными плазмотронами. Эффект достигается как тепловым, так и механическим действием плазмы (бомбардировкой изделия частицами плазмы, движущимися с очень высокой скоростью). Плазменную резку успешно применяют при обработке хромоникелевых и других легированных сталей, а также меди, алюминия и др5 гих металлов, не поддающихся кислородной резке. Большая производительность и высокое качество плазменной резки не только дают возможность эффективно использовать этот прогрессивный процесс на автоматических линиях, но и позволяют исключить ряд до-  [c.55]

При перегреве легированной стали или недостатке легирующих элементов (хрома, алюминия и кремния) образуются в большом количестве пористые окислы железа, что способствует усиленной диффузии ионов металла и кислорода и усиленному окислению.  [c.644]


Примерами легирования с целью образования совершенного защитного слоя продуктов коррозии на поверхности сплава являются легирование меди алюминием или цинком для повышения коррозионной стойкости в атмосферных условиях легирование молибденом нержавеющих хромоникелевых сталей для повышения их коррозионной стойкости в р астворах, содержащих хлор-ионы.  [c.79]

На кинетику растворения влияет pH, потенциал и присутствие ионов в растворе для испытаний. Все эти факторы — основа метода селективного металлографического травления, который уже нашел практическое применение [32, 56, 57]. При этом часто используется потенциостат для поддержания постоянного потенциала многофазного сплава на уровне, соответствующем растворению отдельной фазы, в то время как остальная поверхность остается пассивной. Предварительное исследование смещения области потенциала может быть сделано для того, чтобы определить, будут ли электрохимические свойства различных фаз достаточно различаться в выбранном Электролите, чтобы можно было произвести селективное травление илн удаление определенных фаз. Один из таких методов [58] был разработан для аустенитных сталей, легированных алюминием (рис.  [c.608]

Дрелей и Разер [2, 4] предполагают, что выделяющийся на поверхности раздела металл—окисел газообразный водород разрушает защитную окисную пленку. Если же алюминий образует пару с более катодными металлами или легирован никелем и железом, то ионы Н" разряжаются не на алюминии, а на катодных  [c.278]

Ионное легирование алюминия молибденом, хромом и никелем при дозах легирующих ионов 2-10 моль/см и энергиях 20 кэВ способствует значительному повышению коррозионной стойкости алюминия даже в растворах, содержащих такие сильные депассиваторы, как сульфаты. Обычными металлургическими методами получать однофазные твердые растворы указанных легирующих добавок в алюминии нельзя из-за их малой растворимости. Так, например, растворимость никеля в алюминии при 500 °С составляет 0,006%, хрома при 400°С — 0,06%, а при более низких температурах область растворимости этих металлов в алюминии на диаграммах фазового равновесия вообще отсутствует.  [c.134]

Влияние покрытия алюминием ( 5 мкм), сформированного методом ионного легирования, на водородное охрупчивание высокопрочной мартенситостареющей стали состава, (%) 18,04 № 15,0 Сг 6,43 Мо 1,09 Т1 0,062 А1 С, Si, Мп, Р и 8 ниже 0,005 определяли при испытаниях на растяжение образцов с надрезом в атмосфере водорода при комнатной температуре и скорости деформации 1,7 мкм " [117]. Как показали результаты экспериментов, предел прочности при растяжении в вакууме образцов с покрытием и без покрытия примерно одинаков и равен 2800 МПа. Предел прочности при растяжении образцов в атмосфере водорода снижался при давлении водорода выше 2,67 кПа, но во всех случаях коррозионно-механическая прочность образцов с покрытием была выше, чем у образцов без покрытия.  [c.56]

Конкретными примерами первого способа легирования являются повышение коррозионной стойкости меди в атмосферных условиях легированием алюминием (алюминиевые бронзы) и цинком (латуни) повышение ще-лочеупорности сталей и чугунов легированием их никелем повышение коррозионной устойчивости хромоникелевых сталей в растворах, содержащих хлор-ионы, легированием молибденом.  [c.312]

Повышение стойкости железа к окислению при легировании хромом или алюминием происходит, вероятно, в результате значительного обогащения наружного слоя оксидной пленки легирующими компонентами. В сплавах Fe—Сг, как показали химический и электронномикроскопический анализы, средний слой оксидных пленок обогащен хромом, а внутренний, прилегающий к металлу, — хромом [56, 57]. Этот внутренний слой оксида в большей степени, чем FeO, препятствует миграции ионов и электронов. Обогащение оксидной пленки хромом в Сг—Fe-сплавах сопровождается обеднением поверхностного слря сплава, находящегося непосредственно под окалиной. Этим объясняется  [c.204]

Дрейли и Разер 2, 8] объясняют наблюдаемые факты тем, что выделяющийся на поверхности раздела металл—оксид газообразный водород разрушает защитную оксидную пленку. Если алюминий контактирует с более электроотрицательным металлом либо легирован никелем или железом, то можно предполагать, что ионы Н+ разряжаются на катодных участках, а не на алюминии, и оксидная пленка остается неповрежденной. Однако полезное действие катодных участков можно также объяснить [91 анодной пассивацией или катодной защитой алюминия. Это влияние сходно с действием легирующих добавок платины и палладия (или контакта с ними) на нержавеющую сталь аналогичным образом эти металлы пассивируют также титан в кислотах (см. разд. 5.4).  [c.344]


Как следует из критериев изоморфизма, ионы редкоземельных элементов вследствие их больших размеров не могут быть введены в решетку оксида алюминия. Попытки преодолеть эти затруднения привели к исследованию соединений типа LaMgAlllOlв, характерных, как это следует из диаграмм состояний (см. рис. 39—41), для первой группы редкоземельных элементов (Ба, С1 и Рг). Такие соединения имеют гексагональные решетки, допускают легирование ионами неодима и характеризуются высоким коэффициентом теплопроводности. Технология выращивания кристаллов в настоящее время разрабатывается и в будущем они могут стать конкурентоспособными по сравнению с таким материалом, как гранат.  [c.75]

С увеличением концентрации хрома в стали стойкость последней в воде при высоких температурах повышается. Так, при температуре 160° С в воде, содержащей 0,004 мг/л кислорода, у стали, легированной 5% хрома, скорость коррозии уменьшается в 3,5 раза [111,148]. Увеличение в этих же условиях концентрации хрома до 12% влияет на скорость коррозионного процесса незаметно. В тех случаях, когда материал должен быть не только устойчив против коррозии, но и эрозионно стоек, преимущество хромистых сталей еще более очевидно. Если, например, в дистиллированной воде при повышенной температуре и давлении принять стойкость деталей насосов, изготовленных из углеродистой стали, за 1, то стойкостьхромистых сталей с концентрацией 5—13% хрома 100—105 [111,149]. В паровой же фазе, по данным Ж. Нокса [111,150], если сталь легировать 5% хрома, скорость коррозии почти не уменьшается. Она уменьшается лишь в том случае, если концентрация хрома в стали равна 9%. Хромистые стали более стойки, чем углеродистые, и в растворах, содержащих хлористый натрий. Так, у стали, легированной 3,7% хрома и 1,3% алюминия, коррозионная стойкость в морской воде в пять раз выше, чем у углеродистой стали [111,151]. Ж. Б. Годшал [111,149] отмечает, что детали насоса, изготовленные из стали, легированной 5% хрома и 0,5% молибдена, находились в удовлетворительном состоянии после 50 000 час эксплуатации. Детали же, изготовленные из углеродистой стали, вышли из строя вследствие коррозионных повреждений уже через 500- час. Как уже указывалось выше, в растворах, содержащих ионы хлора, хромистые стали подвержены местной коррозии. Легирование хромистых сталей небольшим количеством меди и молибдена не изменяло существа дела [111,152].  [c.172]

Наилучший защитный эффект наблюдался при добавлении в воду 30 мг л метасиликата натрия при pH 3,6. При добавлении бихромата натрия скорость коррозии алюминия увеличивалась. К. М. Карлсен [111,173] считает, что хромат натрия при высоких температурах является деполяризатором. Именно по этой причине с присутствием его в воде скорость коррозии алюминия увеличивается. Защитным действием обладает смесь 0,5% бихромата кали и 0,5% силиката натрия [111,170 111,173 111,196], хотя каждый из них в отдельности в количестве 1 % вызывает значительную язвенную коррозию алюминия [111,173]. По данным других авторов [111,183], введение в воду 500 мг л кремниевой кислоты снижает скорость коррозии алюминия в пять раз, а наличие в ней окиси мыщьяка вызывает появление язв на его поверхности. Пирогалл-значительно ослабляет агрессивное действие среды [111,170]. Следует также отметить, что если при высокой температуре метасиликат натрия оказывает защитное действие только в кислой среде, то при температуре 40° С в воде с pH 11с добавлением небольшого количества метасиликата натрия коррозия алюминия прекращается [111,197]. Из табл. 111-32 видно, как влияет кремниевая кислота на коррозионное поведение сплава алюминия 155 с концентрацией 0,49% никеля, 0,5% железа и 0,22% кремния [111,177]. Растворенная в воде кремниевая кислота действует в нейтральной среде как ингибитор более эффективный, чем ионы фосфата. При снижении температуры вода, содержащая кремниевую кислоту, слегка подкисляется. Оптимальная концентрация ее 0,3—1,0 г/л. Введение при температуре 92° С в воду 100 мг л фосфата несколько замедляет коррозионный процесс [111,192]. В растворе фосфорной кислоты с pH 3,5 скорость коррозии сплава алюминия, легированного 1% никеля и 0,6% железа, была менее 0,1 мг1дм суш. Экспе-  [c.191]

Ж- Е. Дрейли и В. Е. Разер [111,172] считают, что атомарный водород, образовавшийся в результате коррозионного процесса, диффундирует в глубь металла главным образом по дефектам кристаллитов. В пустотах же образуются молекулы водорода, вследствие чего развивается высокое давление. Под действием высокого давления на поверхности металла появляются пузыри. При разрыве пузырей в пустоты попадает вода, и весь процесс начинается сначала. В результате алюминий подвергается межкристаллитной коррозии и на поверхности образца образуется смесь окислов с металлом, который не подвергался коррозии. Дрейли и Разер считают, что при легировании алюминия компонентами, на которых перенапряжение реакции разряда ионов водорода мало, на его поверхности будут образовываться молекулы водорода, а атомарный водород не будет проникать в металл, а следовательно, не вызовет его коррозии. Концентрация водорода в алюминиевом сплаве 1100 при коррозии его в горячей воде, увеличивается. В том жесплаве, но легированном никелем, этого не наблюдается. Образцы алюминия, покрытые слоем никеля толщиной 7-10 см, показали хорошую коррозионную стойкость в дистиллированной воде при температуре 260 и 315° С [III, 172]. Введение в чистый алюминий 0,5—2,0% никеля значительно улучшает его коррозионную стойкость при температуре 315° С. То же самое происходит и при легировании другими компонентами, являющимися катодами по отношению к алюминию  [c.197]


Это обстоятельство позволяет полагать, что положительное влияние никеля и других легирующих веществ с малым перенапряжением водорода на повышение коррозионной стойкости конструкционных материалов может быть вполне объяснено на основе теории эффективных катодных присадок, разработанной Н. Д. Тома-шовым [111,202]. Поданным К. Видема [111,157] смещение потенциала алюминия от стационарного значения в положительную сторону вызывает увеличение скорости коррозии металла. Это говорит о том, что при температуре 200° С в отличие от комнатных температур, стационарный потенциал алюминия соответствует активной области. При введении в.алюминий легирующих компонентов с малым перенапряжением реакции разряда ионов водорода и ионизации кислорода, скорость катодного процесса увеличивается, что приводит к смещению стационарного потенциала металла в положительную сторону. При этом достигаются значения потенциала, соответствующие области пассивации, а скорость коррозии алюминия значительно снижается. Аналогичного эффекта можно добиться, поляризуя металл анодно. Действительно, анодная поляризация улучшает коррозионную стойкость алюминия в дистиллированной воде при температуре 325° С, а катодная поляризация в этом случае увеличивает скорость коррозии [111,193]. На основании изложенного можно полагать, что те легирующие компоненты с введением которых скорость коррозии алюминия при низких температурах (медь, никель, железо и др.) увеличивалась, при высоких температурах должны способствовать увеличению коррозионной стойкости металла. Приведенные рассуждения подкрепляются следующими экспериментальными данными. Ж- Е. ДрейлииВ. Е. Разер [111,193] измеряли стационарный потенциал алюминиевых сплавов в дистиллированной воде при температуре 200° С. Электродом сравнения служил образец из нержавеющей стали. Стационарный потенциал алюминиевого сплава с концентрацией 5,7% никеля оказался на 0,16 б положительнее, чем стационарный потенциал алюминиевого сплава 1100. При катодной поляризации с плотностью тока Ъмш1см-потенциал сплава 11(Ю смещался в отрицательную сторону на 1,2б, в то время как смещение потенциала сплавов, легированных 11,7% кремния, составляло 0,34 б, а сплавов, легированных 5,7% никеля, 0,12 б, что является косвенным показателем того, что на двух последних сплавах скорость катодного процесса больше, чем на алюминиевом сплаве 1100. С точки зрения теории эффективных катодных присадок, легирование платиной и медью должно оказывать положительное действие на коррозионную стойкость алюминия. В самом деле, с введением в алюминий 2% платины или меди коррозионная стойкость последнего в дистиллированной воде при 315° С значительно увеличивается [111, 193]. С этих же позиций легирование свинцом, оловом, висмутом и кадмием не должно улучшать коррозионной стойкости алюминия, что и подтверждается экспериментальной проверкой [111,193]. Как установлено К. М. Карлсеном [111,173],  [c.198]

Титан и его оъчавы обладают очень высокой коррозионной стойкостью в морской воде, влажной морской и промышленной атмосфере. В этих средах скорость коррозии титановых сплавов не превышает 0,0001 мм/год. Несмотря на то, что титан относится к наиболее термодинамически неустойчивым металлам, его высокая коррозионная стойкость обусловлена защитными свойствами образующихся гидридных и оксидных пленок. Титановые сплавы устойчивы в окислительных средах даже в присутствии больших количеств хлор-ионов в большинстве органических сред. Исключение составляют серная, соляная, муравьиная, щавелевая, винная, лимонная, смесь ледяной уксусной кислоты с уксусным ангидридом. Технические титановые сплавы, легированные алюминием (до 6%), марганцем (1...2%), оловом широко используются в химическом машиностроении, пищевой промышленности.  [c.158]

Введение ионов алюминия в железо (99 95%) при дозах облучения 1-10 —1,5-10 моль/см в кислородсодержащей атмосфере при температурах 720—1020 °С приводит к изменению-вида кинетических кривых окисления в сравнении с окислением чистого железа начальная стадия окисления легированного, железа описывается, как и для чистого железа, параболическим законом, но с меньшей константой скорости процесса. Однако по истечении некоторого промежутка времени, определяемого температурой и дозой облучения, скорость окисления (коррозии) резко уменьшается. Ощутимый защитный эффект от введения алюминия достигается при дозе около 5-10 моль/см . Замедление окисления в этом случае объясняется образованием стабильной шпинели FeAl204.  [c.132]

Легирование молибденом повышает стойкость алюминия также к питтинговой коррозии. Об этом свидетельствует сдвиг потенциала пробоя легированного алюминия в положительную область значений более чехм на 200 мВ в растворе, содержащем 1 г/л хлорид-ионов.  [c.134]

Легирование алюминия магнием и кремнием уменьшает токи растворения в аммонизированном рассоле и Na l (310 г/л), однако потенциалы питтингообразования несколько сдвигаются в отрицательную сторону. На всех сплавах имеется область пассивного состояния, протяженность которой составляет 0,5 В (аммонизированный рассол) и от 0,1 до 0,05 В (Na l). Малая пассивность в последнем характеризуется наличием в растворе хлор-иона. На поляризационных кривых, снятых в растворах (КН4)2СОз (0,01- 5 н), имеется обширная область пассивного состояния от — —1,013 до - - 0,8 В.  [c.31]

Сплавы ниобия и тантала. Поскольку NbaOg — полупроводник п-типа с анионными вакансиями, можно было бы полагать, что добавка в ниобий более высоковалентного металла (в области параболического окисления) должна привести к снижению скорости окисления. Однако анализ изменения концентрации и подвижности анионных вакансий в NbgOs при легировании титаном, ванадием, хромом и алюминием показывает, что в связи с высокой концентрацией дефектов, отличающейся лишь на два порядка от концентрации свободных электронов в металлах, и возможным изменением подвижности при изменении их концентрации подход к жаростойкому легированию ниобия с позиции теории Вагнера неприменим. Априорный выбор добавок в данном случае затруднен. Важную роль играет размер иона легирующего элемента. При образовав НИИ однофазной окалины легирование ниобия металлами, образующими ионы меньшего, чем ион размера,  [c.427]

Несмотря на некоторое расхождение результатов, рис. 112 достаточно хорошо отображает большую часть экспериментальных данных. Как видно из этой диаграммы, некоторые металлы оказывают довольно большое воздействие благодаря значительной электроположительности основного металла. В результате этого окисные слои обогащаются легирующими элементами. Для олова, цинка и особенно алюминия это подтвердили Эрдманн-Еснитцер с сотрудниками [830]. Даже на сплавах, содержавших по 1 % меди или висмута, окалина была обогащена легирующими элементами, вероятно, благодаря значительной растворимости ионов в окислах свинца. Прн легировании висмутом образующиеся окисные слои имели такой же вид, как и на чистом свинце.  [c.362]


Оксидные пленки на меди, железе и алюминии быстро растут при комнатной температуре до толщины порядка 200—400 нм. Термическое оксидирование чистого алюминия при 425 С и выше приводит к образованию как аморфной, так и кристаллической оксидной пленки в модификации = А1гОз. Аморфная пленка создается благодаря диффузии ионов алюминия через оксид, а кристаллическая образуется в виде серий расширяющихся цилиндров, возникающих в аморфной пленке на границе оксид — металл вследствие миграции ионов кислорода через оксидную пленку к поверхности металла. У аморфной пленки энергия активации составляет 226, а у кристаллической 80 кДж/моль. Легирование алюминия медью (до 1%)  [c.377]

Жаростойкими являются, как правило, высоколегированные стали, содержащие хром, алюминий и кремний в количествах, достаточных для изменения кристаллической структуры и свойств оксидной пленки. Для обеспечения жаростойкости главное значение имеет хром, его содержание в сталях разных классов составляет 6-28 %. При повышении содержания хрома оксидные плешси принимают кристаллическую структуру шпинели (Ре0-Сг20з, Ре0 А120з и более сложного химического состава) с низкой диффузионной проницаемостью для ионов и хорошими защитными свойствами. Дополнительное легирование хромистых сталей кремнием (цо 2-3 %) и алюминием (до 5-6 %) повышает жаростойкость.  [c.259]

Рассматривая причины межкристаллитной коррозии алюминия высокой чистоты при температурах выше 160 °С, можно предположить следующее. Границы зерен содержат даже в очень чистом алюминии больше различных примесей, чем центр зерна. В межкристаллитных переходных зонах вследствие межкристаллитной адсорбции возрастает содержание легирующих элементов, что и обусловливает изменение потенциала этих участков металла [161]. Скорость катодного процесса на тих примесях возрастает, что приводит к облагораживанию потенциала участков зерна, прилегающих к границе. Поскольку пр11 высоких температурах чистый алюминий при стационарном потенциале корродирует в активной области, смещение потенциала в положительную сторону приводит к ускоренному рас-гв орению пограничных участков зерен. Так, при коррозии алю- миния чистоты 99,99% в воде при 100 °С границы зерен являются катодами. Гидроксил-ион, образующийся при протекании катодной реакции, разрушает защитную окисную пленку, что ведет к развитию межкристаллитной коррозии. Подкисление среды препятствует накоплению гидроксил-ионов на локальных катодах. В св язи с этим в 0,01-н. растворе соляной кислоты при 100°С межкристаллитная коррозия алюминия высокой чистоты л енее интенсивна, чем в кипящей дистиллированной воде [162]. Значительное смещение потенциала в положительную сторону вследствие анодной поляризации или легирование элементами с. малым перенапряжением водорода до значений потенциала, отвечающих пассивной области, должно предотвратить развитие меж кристаллитной коррозии, что и наблюдается на опыте.  [c.86]

Подобный аномальный ход кривых для твердых растворов на основе меди должен быть приписан экзотермичности реакции образования твердого раствора, так как сплавы с bbi okhvi содержанием меди, ка и медь, часто дают стационарные потенциалы, приводимые ближе всего к равновесным металлическим электродам первого или второго рода, т е. зависящим от активности собственных ионов в растворе. В случае твердых растворов на основе алюминия подобное аномальное изменение потенциала с большим основанием должно быть приписано повышению защитных свойств пленки на алюминии в результате дополнительного легирования магнием или литием (так как значение сгационарного потенциала на алюминии и его сплавах обычно определяется большей или меньшей сплошностью защитных пленок в данных условиях).  [c.203]


Смотреть страницы где упоминается термин Алюминий ионное легирование : [c.18]    [c.66]    [c.220]    [c.229]    [c.88]    [c.219]    [c.177]    [c.103]    [c.427]    [c.187]    [c.91]   
Кислородная коррозия оборудования химических производств (1985) -- [ c.134 ]



ПОИСК



Алюминий легирования

Иониты

Ионов

Легирование

По ионная



© 2025 Mash-xxl.info Реклама на сайте