Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критерий феноменологический

Кроме феноменологических подходов к проблеме хрупкого разрушения в настоящее время интенсивно развиваются исследования по анализу предельного состояния кристаллических твердых тел на основе физических механизмов образования, роста и объединения микротрещин. Разработаны дислокационные модели зарождения и подрастания микротрещины [4, 24, 25,. 106, 199, 230, 247], накоплен значительный материал по изучению закономерностей образования и роста микротрещин в различных структурах [8, 22, 31, ИЗ, 183, 213, 359, 375, 381], подробно изучены макроскопические характеристики разрушения, в том числе зависимости истинного разрушающего напряжения от разных факторов, таких, как диаметр зерна, температура и т. д. [6, 101, 107—109, 121, 149—151, 170, 191, 199, 222, 387, 390, 410, 429]. Как отмечалось выше, при формулировке критериев разрушения наиболее целесообразным представляется подход, интерпретирующий механические макроскопические характеристики исходя из структурных процессов, контролирующих разрушение в тех или иных условиях.  [c.59]


Это представление чрезвычайно узкое, так как на самом деле разрушение всегда развивается во времени с той или иной скоростью. Отчасти этот факт учитывается в критериях длительной прочности (см. 8.10) и при исследовании циклической прочности (см. 8.9), где описание явления идет на феноменологическом уровне без особых притязаний на объяснение происходящих при этом глубинных процессов разрушения в материалах. В то же время не представляется возможным грамотно конструировать и рассчитывать на прочность конструкции без ясного представления механизмов разрушения. Усилия многих ученых и научных коллективов направлены на решение этой чрезвычайно важной научной и технической проблемы. Достигнутые результаты уже находят применение в практике расчетов на прочность. Ниже в общих чертах описаны основные результаты, касающиеся в первую очередь объяснения процесса разрушения металлов.  [c.182]

Феноменологическая теория разрушения не предполагает наличия единого критерия напряжения или деформации (см. гл. XII) и основана на необходимости разработки критерия, учитывающего историю деформирования е(т),.напряженное состояние и его изменение во времени/г (т).  [c.519]

ХОДУ, материал считается состоящим из отдельных связанных между собой слоев. Каждый слой предполагается однородным (что следует из феноменологического анализа) и ортотропным. Распределение деформаций по толщине пакета принимается линейным. Критерий разрушения записывается последовательно для каждого слоя в отдельности и предельная нагрузка для материала определяется в предположении допустимости нарушения его сплошности в процессе деформирования. Согласно второму подходу, слоистый материал рассматривается как однородный анизотропный критерий разрушения записывается сразу для всего пакета слоев. Первая процедура предполагает известными прочностные характеристики отдельного слоя (см. раздел II). Далее на основании этих данных поверхности разрушения слоистых материалов с произвольной структурой формируют теоретически. Такой подход получил наибольшее распространение при оценке прочности современных композиционных материалов, так как в процессе проектирования конструкции приходится рассматривать множество возможных структур материала. Вторая процедура предполагает известными прочностные характеристики рассматриваемого слоистого материала. Она эффективна для материалов, армированных тканями и образованных из одинаковых слоев. Далее рассмотрены критерии, основанные на послойной оценке прочности материала.  [c.80]


Феноменологические критерии разрушения анизотропных сред  [c.401]

Феноменологический критерий разрушения можно рассматривать как некую передаточную функцию, связывающую внешнее воздействие с реакцией материала на это воздействие при этом разрушение понимается как возникновение любого наблюдаемого нарушения сплошности среды. Внешние воздействия могут быть механическими, тепловыми, химическими, магнитными, радиационными и т. д. В настоящей работе внимание сосредоточено на описании механического разрушения (в частности, нелинейности связи напряжений с деформациями или  [c.403]

Феноменологический критерий разрушения можно построить как при помощи адекватной математической модели, так и без нее, поскольку при наличии многочисленных результатов экспе-  [c.404]

При феноменологическом описании прочности материала математическая модель (или критерии разрушения) обязательно удовлетворяет некоторым основным требованиям.  [c.406]

Поскольку обсуждаемые здесь критерии разрушения являются феноменологическими, естественно предполагается, что любая математическая модель, удовлетворяющая сформулированным выше требованиям, приводит к некоторому допустимому критерию разрушения. Очевидно, что в этих условиях о единственности критерия разрушения речи быть не может, и это следует иметь в виду в дальнейшем.  [c.406]

Форму поверхности прочности, соответствующую любому феноменологическому критерию, невозможно полностью определить до тех пор, пока экспериментально не исследованы всевозможные напряженные состояния среды. Если экспериментальные точки лежат далеко друг от друга, то поверхность прочности может показаться гладкой, в то время как более тщательные эксперименты могут выявить более тонкую и сложную структуру. Хорошо известным примером являются эксперимен-гальные работы последних лет, когда были открыты угловые точки на изотропной поверхности текучести. Однако в действительности степень точности построения поверхности прочности представляет собой компромисс между требованиями инженерной практики и имеющимися в распоряжении экспериментатора средствами и временем. Следовательно, математическая модель должна служить руководством при выяв,лении нерегулярностей формы поверхности прочности и в то же время должна быть такой, чтобы ее можно было легко упростить и приспособить к исследованию данного конкретного материала в данных условиях.  [c.408]

Главные особенности явления разрушения были объяснены в работе Цая и By [46] путем детального исследования таких вопросов, как определение технических параметров прочности, условия устойчивости, влияние преобразований системы координат, приложения к изучению трехмерных армированных композитов и вырожденных случаев симметрии материала. Дополнительную информацию из формулировки (5а) критерия можно получить путем анализа тех требований к поверхности прочности, которые вытекают из геометрических соображений. В соответствии с концепциями феноменологического описания ниже будут обоснованы общие математические модели, обеспечивающие достаточную гибкость и возможность упрощений на основании симметрии материала и имеющихся экспериментальных данных. Мы начнем с рассмотрения тех преимуществ, которые имеет формулировка критерия в виде (5а) по сравнению с другими формулировками, использующими уравнения вида (1) или  [c.412]

Феноменологические критерии разрушений анизотропных сред 423  [c.423]

При обсуждении математических свойств критерия разрушения особо подчеркивается, что любая формулировка феноменологического критерия не является единственной единственность представляет собой следствие модельного способа построения критерия и не может проистекать из сформулированных выше основных принципов. Короче говоря, в рамках феноменологического подхода к проблеме разрушения результаты экспериментов можно использовать ие как средство обоснования той или иной теории разрушения, но лишь как подтверждение рациональности планирования эксперимента и как способ исследования адекватности полученного критерия исходной модели.  [c.460]

В настоящее время имеется большое количество работ, посвященных анализу прочности и долговечности материалов и элементов конструкций. В ряде публикаций проблема прочности и разрушения рассматривается с феноменологических позиций— на базе концепций механики деформируемого твердого тела. К другому направлению относятся работы по развитию физики прочности и пластичности материалов, в которых анализ рузрушения проводится на атомарном и дислокационном уровнях, т. е. на микроуровне. В этих исследованиях весьма затруднительно включение в параметры, управляющие разрушением, таких основных понятий механики, как, например, тензоры деформаций и напряжений или жесткость напряженного состояния. Поэтому в последнее время интенсивное развитие получило направление, которое пытается соединить макро- и микроподходы при описании процессов повреждения и разрушения материала и формулировке критериев разрушения.  [c.3]


Кроме рассмотренных теорий прочности в течение первой половины XX в. и до настоящего времени был предложен целый ряд новых теорий, исходящих из феноменологических предпосылок, которые, как правило, базируются на одной из классических теорий, т. е. используются те же критерии прочности, но с введением дополнительных условий. К этим теориям относятся критерий Шлейхера, критерий Мизеса — Генки, критерий П. П. Баландина, критерий Г. С. Писаренко и А. Л. Лебедева, критерий И. Н. Миро-любова, критерий Ю. И. Ягна, критерий Г. А. Гинеева и В. И. Кис-сюка, а также объединенная теория прочности Н. Н. Давиденко-ва-—Я. Б, Фридмана и другие теории советских и зарубежных ученых.  [c.102]

А. Сен-Вепана, О. Мора, характеризуется широким исследованием деформативных свойств тел и построением (носящим феноменологический характер) различных критериев разрушения, называемых теориями прочности. Сущность этих теорий состоит в  [c.5]

В рамках феноменологического подхода общим для различных моделей развития трещин в твердых телах является то, что в начальный момент считается заданным некоторое конечное возмущение в виде начальных трещин, что хорошо согласуется с экспериментальными данными о наличии несовершенств структуры материала, какой бы предварительной технологической обработке он ни подвергался. Отсюда при выводе различных критериев прочности с учетом процесса разрушения получают соотношения, совпадающие по форме с обычными критериями нроч-jto TH только входящие теперь в эти соотношения постоянные зависят от координат, длин п геометрии начальных трещин.  [c.6]

Инженерные критерии разрушения строят на основе данных о поведении и прочности микрообъемов материала, т. е. они имеют феноменологический характер. Единого математического пред ставления поверхности разрушения для заданного композицион ного материала не существует, и выбор критерия разрушения" определяется наилучшим соответствием между определенными экспериментально пределами прочности материала, а также правдоподобным представлением о его прочности при еще не исследованных экспериментально напряженных состояниях. Наиболее существенной предпосылкой для построения критерия разрушения является то, что он должен описывать поверхность в пространстве напряжений.  [c.64]

Критерии разрушения разрабатывают для того, чтобы иметь возможность описать прочность материала при сложном напряженном состоянии. К двум наиболее важным характеристикам критерия относятся его свойство достаточно точно описывать экспериментальные результаты и простота использования. Все современные инженерные критерии являются феноменологическими. Микромеханические явления, возникающие в процессе разрушения, рассматриваются постольку, поскольку они проявляются в макромеханическом поведении материала. Единого математического подхода к описанию поверхности разрушения не существует, поэтому в литературе можно найти множество применяемых критериев. Здесь обсуждаются только некоторые из них, наиболее распространенные. Выбор группы критериев или жакого-то конкретного критерия определяется достаточно общими и в известной степени субъективными соображениями. Он зависит от имеющегося объема экспериментальных данных, описывающих характеристики, материала выбранной концепции расчета (по предельным или максимальным расчетным нагрузкам), допустимого уровня нарушения сплошности материала при нагружении и от склонности к тому или иному подходу при анализе прочности конструкции.  [c.79]

ПОЛНОГО разрыва). обусловленного механическим воздействием (напряжднйем, деформацией или работой). Таким образом, -т сТпГэкспериментально измеряемые параметры материала, определяющие математическую модель, отражают интересующие нас нарушения сплошности среды, то критерий разрушения можно применять для описания явлений течения или разрыва безотносительно к виду нарушений сплошности. Обсуждаемые здесь критерии разрушения можно использовать при разработке новых композиционных материалов и в различных технических приложениях. При разработке нового композита можно варьировать взаимное расположение матрицы и армирующих элементов для улучшения тех или иных свойств материала. Если эти свойства связаны с прочностью материала, то феноменологический критерий разрушения осуществляет обратную связь с изменениями геометрии композита, определяет технологию его изготовления и обеспечивает прочность, необходимую для рациональных проектных решений.  [c.404]


Смотреть страницы где упоминается термин Критерий феноменологический : [c.126]    [c.50]    [c.455]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.539 ]



ПОИСК



Критерий макроразрушения концентрационный феноменологический

Разрушения критерий феноменологический

Феноменологические критерии прочности

Феноменологические критерии разрушения анизотропных сред. Перевод А. С. Кравчука



© 2025 Mash-xxl.info Реклама на сайте