Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Параметры определяемые усталости

Описание явления многоцикловой усталости при сложном напряженном состоянии затруднено большим количеством параметров, определяющих процесс циклического нагружения. Если даже все компоненты напряжений имеют одинаковые и совпадающие во времени периоды изменения, то и тогда напряженное состояния характеризуется двенадцатью параметрами шестью максимальными за период цикла значениями компонентов напряжений и шестью соответствующими коэффициентами асимметрии циклов. При этом необходимо принимать во внимание, совпадают ли фазы изменения трех нормальных напряжений, или фаза изменения одного из них сдвинута относительно двух других на некоторую величину так, что это напряжение убывает, когда два других возрастают, или наоборот. Случай сдвинутых фаз является с точки зрения возможности усталостных разрушений более опасным.  [c.23]


Современными стандартами предусматривается сравнительно небольшое число сечений клиновых и поликлиновых ремней. Так имеется (в порядке возрастания их размеров) шесть нормальных сечений (2, А, В, С, D, Е) и четыре узких сечения клиновых ремней (SPZ, SPA, SPB, SP ), а также три сечения (К, Л, М) поликлиновых ремней. Для ремней этих сечений накоплен достаточный объем данных о параметрах кривых усталости. Поэтому расчет базируется одновременно на тяговой способности [см. выражение (14.17)] и долговечности ремня, определяемой кривой усталости (14.27). Решая совместно (14.17), (14.20), (14.23) и (14.27) с учетом (14.21) и (14.22), получаем зависимость для допускаемого напряжения от окружной силы  [c.384]

Отношение среднего числа экстремумов к среднему числу нулей в единицу времени удобно принять за параметр, определяющий сложность структуры процесса. Чем более высоким будет это отношение, тем более сложной, является структура процесса и тем более ответственным становится выбор метода его схематизации. Проведенная схематизация заданного случайного процесса приводит к последовательности простых циклов нагружения, которым можно поставить в соответствие циклы нагружения при стандартных испытаниях на усталость. Тем самым появляется возможность расчета на усталостную долговечность.  [c.181]

Скорость распространения трещин. Для описания закономерностей, которым подчиняется рост трещин ползучести, усталости и малоцикловой усталости, используют методы механики разрушения [149-153], основанные на том, что параметром, определяющим скорость роста трещин (СРТ), является коэс и-циент интенсивности напряжений Ki или размах коэффициентов интенсивности напряжений йК. Значения Ki рассчитываются по формуле Kl = Yгеометрический фактор, значения которого определены для различных тел [151].  [c.222]

Возможность дать определение разрушению — вот еще одна задача любого исследования, касающегося усталости. Должно ли состояние, определяемое по достижению трещиной некоторой длины, называться разрушением или следует дать иное определение исчерпанию несущей способности в процессе усталостного нагружения. Одной из важных причин широкого использования композитов является их высокая жесткость, поэтому любое ее уменьшение в процессе эксплуатации неблагоприятно сказывается на некоторых параметрах, ограничивающих применение конструкции, в частности на основной частоте. Таким образом, изменение жесткости до определенного предельного уровня в ряде случаев также следует трактовать как разрушение.  [c.85]


Полученные в работе [122] кривые распределения позволили построить кривые усталости, отвечающие различной вероятности неразрушения и определяющие гарантийную долговечность металлорукавов по параметру вероятности Р (рис. 4.2.7, в). Там же показаны диапазоны рассеяния данных по долговечности конструкционного материала (1) и металлорукавов (2).  [c.195]

Использование метода ЭПА позволило фиксировать тонкое электронно-структурное состояние дефектов, развивающееся при циклической деформации материала. Наблюдающиеся изменения в электронной структуре дефектов коррелируют с параметрами усталости, характеризующими разрушение материала. Каждому значению пара.метра живучести металла, определяемой действующим напряжением и числом циклов до разрушения, отвечает определенное значение измеряемых параметров ЭПА, характеризующих распределение электронной плотности в дефектах. Метод ЭПА, позволяя оценивать эффективный размер дефектов, образующихся при циклической деформации, дает возможность установить их закономерную связь с коэффициентом живучести материала.  [c.425]

Таблица 2. Параметры уравнения, определяющего скорость роста трещины усталости в основном металле и сварных соединениях при различных условиях испытания Таблица 2. Параметры уравнения, определяющего <a href="/info/34435">скорость роста трещины</a> усталости в <a href="/info/384895">основном металле</a> и <a href="/info/2408">сварных соединениях</a> при различных условиях испытания
Двумя другими важными параметрами являются удлинение при разрыве, определяемое отношением длины образца после разрыва к первоначальной длине, и сужение в зоне разрыва, определяемое отношением диаметра образца в точке разрыва к первоначальному. Эти параметры используют в расчетах на малоцикловую усталость.  [c.38]

Сопротивление термической усталости является одной из наиболее сложных характеристик материала и зависит не только от комплекса его внутренних физических и механических свойств, определяемых структурным состоянием, но и от характера внешних нагрузок, определяемых параметрами термодеформационного цикла и окружающей средой.  [c.137]

Разновидностью этих испытаний являются испытания на резонансных частотах, определяемых параметрами испытуемых объектов и присоединенных к ним масс и жесткостей. Эти испытания получили наибольшее распространение в практике высокочастотных испытаний на усталость деталей и образцов материалов.  [c.455]

Параметр КСТ, определяемый на образцах с трещиной усталости у основания надреза, более показателен. Он характеризует работу развития трещины при ударном изгибе и оценивает способность материала тормозить начавшееся разрушение. Если материал имеет КСТ = О, то это означает, что процесс его разрушения идет без затраты работы. Такой материал хрупок, эксплуатационно ненадежен. И, наоборот, чем больше  [c.228]

В связи с этим форма кривой усталости при повышенной температуре имеет ряд особенностей (рис. 47). Эти кривые не имеют выраженного асимптотического характера и не свидетельствуют о существовании пределов выносливости, как их параметра. Такими параметрами являются угол наклона ветвей кривой и, ограниченные по числу циклов пределы выносливости, определяющие положение этих ветвей в логарифмических координатах амплитуда напряжений — число циклов. Форма кривой 1 свойственна умеренным температурам (Т = 0,45- --5- 0,50 Тпд), при которых накопление повреждения возникает в широком диапазоне напряжений низких уровней, с интенсивностью, повреждения меньшей, чем в области высоких напряже-, ний, действие которых сопровождается циклическими пластическими дефор-1У ациями, превышающими упругие или одного порядка с ними. При более высоких температурах (0,50—0,55 Tj,J повышение интенсивности усталостного повреждения во времени и по числу циклов возрастает так же в области низких напряжений. У кривой усталости 2 больший наклон и нет переломов. При еще более высоких температурах (0,55—0,60 T J накопление повреждения главным образом определяется временем действия напряжений, существенную роль при этом играют процессы накопления разрушения на границах зерен и переход от внутри-кристаллического возникновения и распространения трещин к межкри-  [c.216]


На рис. 144 приведены зависимости энергий, определяемых уравнением (III.28), для большой группы сплавов от числа циклов до разрушения по результатам экспериментальных исследований при симметричных циклах растяжения — сжатия, изгиба и кручения. Эти результаты показывают, что использование уравнения (III.28) дает гораздо лучшие результаты, чем использование уравнений (III.26) и (III.27). В этом случае для большинства исследованных металлов наблюдается постоянство энергии, подсчитанной в соответствии с уравнением (III.28). При этом абсолютные значения энергии, подсчитанной по уравнению (III.28), приближаются к значениям энергии, эквивалентной скрытой теплота плавления металлов. Тот факт, что независимость энергии определяемой выражением (III.28), от числа циклов нагружения до разрушения наблюдается для значений параметра близких к единице, свидетельствует о том, что неопасная часть энергии в области кривой многоцикловой усталости весьма велика.  [c.201]

Таким образом, как следует из рассмотренных выше данных, рассредоточенное образование микро- и макротрещин при циклическом упругопластическом деформировании может быть связано со структурной неоднородностью материала, обусловливающей, в свою очередь, неоднородность развития местных циклических деформаций на различных его участках, величины которых подчиняются нормальному закону распределения. Для учета этой структурной неоднородности материала при оценке циклической прочности образцов и элементов конструкций вводятся коэффициенты неоднородности циклической и односторонне накопленной деформаций, определяемые по статистическим параметрам распределения соответствующих величин или другим косвенным методом, в качестве которого, например, может служить метод большого числа измерений микротвердости. Использование указанных коэффициентов в критериальных зависимостях для расчета долговечности в области малоцикловой усталости вместе со средними значениями деформационных характеристик дает возможность определить число циклов до появления отдельных трещин, а также проследить за образованием магистральной трещины, приводящей к окончательному разрушению, что подтверждается и экспериментально.  [c.48]

Важнейшим структурным параметром поликристаллических металлических материалов, влияющим на зарождение и распространение усталостных трещин, является размер зерна [2-10, 23], поскольку границы зерен могут быть эффективными барьерами для развития процессов скольжения. В легких сплавах большое влияние, наряду с размером зерна, на сопротивление усталости также оказывает степень рекристаллизации. В высокопрочных металлических материалах нередко определяющим структурным фактором является размер субзерна или одной из структурных составляющих.  [c.209]

Совершенно очевидно, что материалы, обладающие разными свойствами, по-разному сопротивляются кавитационному воздействию. Из широкого разнообразия физических, химических, электрических и термодинамических свойств материалов такие свойства, как предел упругости, твердость, пластичность, упрочнение наклепом, зависимость свойств материала от температуры, модуль упругости, плотность, предел усталости, энергия деформации при разрушении, предельная работа деформации, теплопроводность, температура плавления, химическая инертность, сцепление окислов с поверхностью, кристаллическая структура и электропроводность, изучались исследователями ранее. Сочетая эти свойства с разными видами кавитационного воздействия, можно видеть, что число различных возможных комбинаций может быть огромным. Поэтому естественно сделать вывод, что вряд ли удастся найти единое объяснение всех причин кавитационного разрушения. Другой вывод состоит в том, что разрушение в конкретной системе твердое тело—жидкость начинается с наиболее слабого звена. Наконец, третий вывод состоит в том, что степень воздействия разных факторов, определяющих кавитационное разрушение, может меняться с изменением параметров течения жидкости. Следовательно, данный материал при разных условиях может подвергаться совершенно различным типам кавитационного разрушения.  [c.429]

Из полученных формул видно, что наиболее существенное влияние на износ оказывают размеры и прочность абразивных частиц, твердость поверхностей трения, определяющая начение Лр (см. с. 142), а также параметр контактно-фрикционной усталости t и физико-химическое состояние поверхностей кулачков в зоне контактов, определяющее параметр 8(.  [c.146]

Необходимо отметить, что указанные факторы — амплитуда деформации, длительность и максимальная температура цикла — являются основными, но не единственными параметрами, определяющими вид разрушения. Не изменяя в целом вид диаграммы, границы областей, характеризующих разрушения различного вида, можно сдвигать в ту или иную сторону для учета воздействия технологических и экшлуатационных факторов (например, шособа и режима выплавки металла, влияния среды, защитных покрытий). Так, вакуумная выплавка никелевого сплава существенно повышает прочность границ зерен, вследствие чего при одних и тех же условиях нагружения смещается область величин сре, фо Ф 1 в которой разрушение происходит по границам зерен. Наоборот, при активном повреждении границ зерен, например при эксплуатации в газовых средах или при склонности материала к межкристаллитной коррозии, разрушение от термической усталости почти всегда начинается по границам зерен еледовательно, в этом случае уменьшаются области Л и 5 на рис. 58 (по границам зерен развивалось разрушение при нагружении стали 12Х18Н9Т при 750° С тв=1,5  [c.102]


Результаты испытаний на усталость позволили построить зависимости пределов выносливости по трещинообразованию и разрушению от остроты надреза для средне- и низкоуглеродистой сталей при изгибе с вращением и кручении (рис. 19). Эти зависимости подтвердили теоретический вывод о том, что напряжения, необходимые для развития усталостной трещины в зоне существования нераспространяющихся трещин, не зависят от остроты надреза. Из полученных зависимостей были определены пределы выносливости гладких образцов Or и тд, максимальные напряжения Стдкр и тнкр, при которых еще возможно существование нераспространяющихся усталостных трещин, и максимальный эффективный коэффициент концентрации напряжений Кат- Далее по формулам (4) и (5) были подсчитаны значения т и Какр- Анализируя результаты этих расчетов (табл. 4), можно сделать вывод, что совпадение параметров, определяющих область существования нераспространяющихся усталостных трещин, полученных теоретически и экспериментально, оказалось достаточно хорошим.  [c.45]

Долговечность соединений деталей машин и, в частности, узлов трения определяется, как известно, рядом эксплуатационных свойств их деталей (износостойкость, контактная жесткость, сопротивление усталости, коррозионная стойкость и т.п.). Эксплуатационные свойства оценивают с помощью эксплуатационных похазателей, таких как интенсивность изнашивания, податливость контактирующих поверхностей, предел сопротивления усталости, коррозионные потери и др. Эксплуатационные показатели физически связаны с определенными конструктивными и технологическими параметрами, характеризующими конструкцию соединения и технологию его изготовления, и параметрами, определяющими условия его работы. Такие параметры обычно называют функциональными.  [c.334]

Следует отметить, что в последние годы появилось очень большое число монографий по механике разрушения. Упомянем семитомный переводной труд энциклопедического характера Разрушение , монографии Морозова и Партона, Черепанова, ряд переводных сборников. Многие авторы понимают под механикой разрушения именно и только механику распространения трещины. Но в теории трещин предполагается, что материал остается упругим и не меняет своих свойств всюду, кроме окрестности конца трещины, которая или стягивается в точку в линейной механике, или рассматривается как пластическая область или область больших упругих деформаций. Такая точка зрения далеко не исчерпывает многообразия реальных процессов разрушения. При переменных нагрузках, например, уже после относительно небольшого числа циклов в материале появляются субмикроскопические трещины, которые растут и сливаются в макроскопические трещины, приводящие к видимому разрушению. Не вдаваясь в детали микроскопической картины, этот процесс можно представить как накопление поврежденности, характеризуемой некоторым параметром состояния. Кинетика изменения этого параметра должна быть включена в определяющие уравнения среды. Такая точка зрения лежит в основе того, что можно назвать механикш рассеянного разрушения. Соответствующая теория развивается применительно к усталости металлов и длительной прочности при высоких температурах.  [c.653]

Повышение требований к параметрам и стремление к снижению веса авиационных ГТД обусловили усиление термической и механической напряженности их деталей, в том числе и дисков турбин. Особенности применяемых на некоторых типах ГТД конструкций дисков турбин (наличие центрального отверстия, расположение крепежных отверстий в напряженной зоне ступицы) приводят к тому, что материал дисков — ЭИ698ВД в зонах концентрации напряжений у отверстий работает в упругопластической области. При этом температурный режим диска в зоне крепежных отверстий является относительно умеренным. В связи с этим для таких дисков влияние процесса ползучести в наиболее напряженных зонах невелико, а основным фактором, определяющим долговечность дисков, являются процессы малоцикловой усталости материала в районе крепежных отверстхп .  [c.541]

В связи с трудностями определения характеристик трещиностой-кости для пластичш,1х материалов (отсутствие испытательного оборудования, большие габариты образцов, сложная методика) предложено много методов опреде.тепия трещиностойкости мета.тлов К с) - через механические характеристики и параметр структуры [2—4], по результатам испытаний на усталость при круговом изгибе [5], по критической длине трещины при испытаниях на усталость [1, 5, 7], по скрытой теплоте плавления и размерам ямок [7], по параметрам зоны вытяжки, определяемой методами количественной фрак-тографии [81, и др. В работе [4] приведен краткий обзор взаимосвязи характеристик трещиностойкости с другими характеристиками.  [c.195]

В каждом из ускоренных способов явление усталости моделируется лишь с некоторой степенью достоверности. Чем полнее и ближе к реальности это моделирование, тем выше качество рассматриваемого ускоренного способа. Для усталости материала определяющими параметрами при прочих равных условиях должны считаться следующие силовой фактор (прежде всего, амплитуда циклических напрянгепий), фактор времени (важнейшее значение имеет время пребывания материала при максимальных значениях напряжений цикла, т. е. длительность верхушки цикла) и специфический для циклической прочности фактор — число перемен характера нагружения (число циклов напряжений). Наиболее трудный (если не невозможный) для моделирования — фактор времени. Обгонять время реально не дано никому, и по этому параметру ни один из экспериментальных способов ускоренного определения характеристик усталости не имеет преимуществ перед другими. Не во всех ускоренных способах осуществляется прямое моделирование и силового фактора, так как не всегда испытания ускоренным способом ведутся при циклическом нагружении с представляющим интерес значением амплитуды мапрян ений. Ни в одном из ускоренных способов, кроме способов, основывающихся на увеличении частоты циклического нагружения, прямо не моделируется фактор количества циклов нагрузки.  [c.335]

Основными параметрами качества поверхностного слоя, определяющими характер влияния технологических факторов на усталость лопаток, являются глубина и степень наклепа, так как шероховатость поверхности обычно соответствует 9-му классу независимо от метода изготовления их. Если упрочнение образцов виброгалтовкой и гидродробеструйной обработкой (режимы 94—95) снижает усталостную прочность при 450° С, то при комнатной температуре в лопатках 3-й ступени ротора компрессора изделия Б этот же наклеп по сравнению с ЭХО повышает сопротивление усталости на 30—45% (база испытания 20 млн. циклов).  [c.212]

Несколько параллелей можно провести также в области влияния микроструктуры на индуцированное водородом разрушение материалов. Наиболее общей из таких закономерностей является положительный эффект уменьшения размера микроструктуры, будь то размер зерна, пластинок мартенсита или частиц выделившейся фазы, например, видманштеттовых а-частиц в титановых сплавах. Положительное влияние этого фактора обычно отмечается также в связи с прочностью, вязкостью разрушения и сопротивлением усталости материалов, так что измельчение микроструктуры может служить примером того, как улучшение одних свойств сплава не влечет за собой очевидного ухудшения других параметров [64] (наиболее существенным исключением является высокотемпературная ползучесть, не рассматриваемая в данной главе). Таким образом, те исследования изменения свойств сплавов под воздействием окружающей среды, в которых размер микроструктуры остается неконтролируемым, просто игнорируют одну из важнейших переменных, даже в тех случаях, когда размерные эффекты не являются главным фактором, определяющим поведение системы.  [c.119]


Третьей группой факторов, определяющих долговечность изделия, являются эксплуатационные. К ним относятся агрессивность среды, ее температура, давление, скорость перемещения, наличие активаторов или пас-сиваторов коррозионного процесса и др. Поскольку условия эксплуатации. из-за необходимости обеспечения требуемых технологических параметров менять практически невозможно, радикальными способами повышения коррозионно-механической стойкости в этом случае являются ингибирование рабочих сред и электрохимическая защита оборудования. Ингибиторы коррозии известны давно и широко применяются на практике. Однако не всякие ингибиторы коррозии могут быть эффективными ингибиторами коррозионной усталости. Целенаправленный синтез ингибиторов коррозионно-механического разрушения начат сравнительно недавно, поэтому число работ, посвященных их влиянию на коррозионную усталость металлов, крайне ограниченно.  [c.4]

Для перехода от значений внешних нагрузок (номинальных напряжений) к локальным напряжениям и деформациям необходимо располагать в соответствии с нормами расчета энергетических конструкций на малоцикловую усталость [2] значениями кэффициен-тов концентрации напряжений (при упругих деформациях) и коэффициента концентрации деформаций К , если местные напряжения превышают предел текучести материала. Если для геометрических концентраторов напряжений типа отверстий, галтелей, выточек и т. п. такие данные в области упругих деформа ий широко представлены в работах [3, 4], то применительно к сварным соединениям строительных конструкций такая систематизация до настоящего времени отсутствует. В связи с этим были проведены исследования зон концентрации напряжений и деформаций в стыковых и угловых швах при простейших способах нагружения (растяжение, изгиб) с применением [5] методов фотоупругости и фотоупругих покрытий. При исследованиях варьировались следующие величины, характеризующие геометрию сварного шва и определяющие уровень концентрации напряжений для стыковых швов — относительная высота наплавленного металла к его ширине q e, относительная ширина шва е/5, радиус перехода р и толщина свариваемых пластин з для угловых швов — соотношение катетов, радиус перехода р и толщина з. Диапазон изменения этих параметров был выбран на основе стандартных допусков на геометрию швов, выполненных ручной дуговой сваркой плавящимся электродом, автоматической и полуавтоматической под слоем флюса и дуговой сваркой в защитных газах. Было принято, что в стыковых сварных соединениях относительная высота валика шва не превышает 0,7, а относительная ширина шва находится в пределах 0,03 е/з 3,4. С увеличением толщины свариваемых пластин относительная высота и относительная ширина шва.  [c.173]

Функции распределения долговечности при действии переменных нагрузок. Исследования закономерностей рассеяния характеристик сопротивления усталостному разрушению легких сплавов показали, что долговечность при постоянном уровне максимального напря кения цикла и предел ограниченной выносливости на заданной базе испытания имеют как нижнюю, так и верхнюю границы [28]. Верхняя граница долговечности легких сплавов, определяемая как параметр распределения, на несколько порядков превышает наблюдаемое при испытании число циклов до разрушения. Нюкняя граница долговечности существенно отличается от нуля. Поэтому мо кно считать, что долговечность при испытаниях на усталость легких сплавов имеет  [c.137]

На рис. 6.35 приведены результаты испытаний на распространение трещины в стали с 0,04 % С при многоцикловой усталости с заданным напряжением (/ = 0) и при малоцикловой усталости с заданной деформацией (знакопеременная деформация R = —1). На рис. 6.35, а скорость распространения трещины ll/dN представлена в зависимости от эффективного коэффициента интенсивности напряжений При многоцикловой усталости, в частности, имеется период, когда вершина трещины в течение одного цикла закрывается, поэтому АК Ктах Ктш не является определяющим параметром механики разрушения. Параметр AKeff определяется [43] как амплитуда изменения величины К от Kopening> при котором трещинз раскрывается, до  [c.219]

Для материалов, работающих в условиях граничной смазки, самосмазывающихся материалов, в ряде других случаев фрикционного взаимодействия твердость поверхностного слоя не является определяющим параметром износостойкости. Большое значение приобретают способность поверхностных слоев многократно передеформироваться, не испытывая сильного наклепа, химическая активность поверхности в отношении окружающей среды и контртела, возможность образования поверхностных слоев с развитой анизотропией механических свойств. С точки зрения структуры, сопротивление материала усталостному изнашиванию определяется прежде всего энергией, необходимой для зарождения трещин, и скоростью их распространения. Положительное влияние ионной имплантации на прочность при малоцикловой усталости связано прежде всего с появлением радиационных дефектов, улучшающих гомогенность деформации (измельчение полос скольжения), и снижением энергии дефектов упаковки при образовании поверхностных сплавов. В условиях многоцикловой усталости большое значение приобретают остаточные напряжения, возникающие при легировании поверхности. В большинстве случаев глубина зарождения усталостных трещин при изнашивании значительно превосходит глубину имплантированного слоя. Исходя из этого, можно предположить, что имплантация влияет не на зарождение трещин, а на их развитие и выход на поверхность. В табл. 3.4 суммированы некоторые результаты исследования износостойкости ионно-легированных слоев в условиях граничной смазки и усталостного изнашивания [26].  [c.97]

Отсутствие объективного анализа перечисленных методов испытания на усталость затрудняло их-правильный выбор. Применение для вероятностного моделирования ЭВМ позволило сопоставить различные методы испытаний, оценить их эффективность — точность и трудоемкость, а также выбрать оптимальные схемы испытаний на усталость в зависимости от определяемых характеристик сопротивления усталости и назначенных для них уровней значимости q й доверительной вероятности Рд. При вероятностном моделировании на ЭВМ различных методов испытаний на усталость исходными данными являются характеристики распределения долговечности гипотетической генеральной кривой усталости параметры а-1/Vp, iVp, т —показатель- степени уравнения a iV= onst средней (с вероятностью Р = 0,5) кривой усталости, дисперсия логарифмов долговечностей 5 ig7Vp> которая может быть принята постоянной (подтверждается экспериментально в пределах каждого-линейного участка кривой — см. разд. 3.3), а также математический алгоритм вычислений оценок пределов выносливости, соответствующий моделируемому методу испытаний на усталость.  [c.101]

Ааализ (94) н (98) показывает, что в них учтено влняние яа основных характерист, определяющих работу подшипника скольжения, а именно конструктивных (параметры / , I, в), технологических (параметры Л, о, V), материаловедческих ( , (1, НВ, t), эксплуатационных (То, Э. Р, /). Таким образом, полученная формула позволяет оиределить интегральную линейную интенсивность изнашивания в установившемся режиме. Наиболее существенно линейная интегральная интенсивность изнашиваиия зависит от параметра контактной фрикционной усталости г, фрикционных констант тд и р, механических свойств материала вкладыша Оо, .  [c.181]


Смотреть страницы где упоминается термин Параметры определяемые усталости : [c.146]    [c.8]    [c.142]    [c.56]    [c.108]    [c.88]    [c.251]    [c.195]    [c.188]    [c.183]    [c.160]    [c.274]    [c.70]    [c.39]    [c.102]    [c.137]    [c.24]   
Моделирование в задачах механики элементов конструкций (БР) (1990) -- [ c.227 ]



ПОИСК



1.125, 126 — Определяемые

Усталость



© 2025 Mash-xxl.info Реклама на сайте