Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Межкристаллитная термообработки

Склонность к межкристаллитной коррозии магналиев —сплавов алюминия с магнием (от 5 до 10% Mg и иногда 1% Мп) — можно в значительной степени устранить соответствующей термообработкой отпуском деформированных магналиев при достаточно высокой (250—400° С) температуре, при которой происходит  [c.420]

Хастеллой С-276 содержит меньше углерода и менее склонен к межкристаллитной коррозии, которая является следствием промежуточной термообработки.  [c.368]


Структура металлов, имеющая особенно важное значение в многофазных сплавах, т. е. в сплавах, фазы которых являются электрохимически гетерогенными, определяется не только химическим составом, но и термической обработкой. Например, нарушение режима термообработки коррозионно-стойких сталей является одной из причин межкристаллитной коррозии. Границы зерен в сталях обогащаются примесями или элементами сплава, химически и электрохимически отличными от зерен металла. Увеличение их концентрации по границам зерен является причиной коррозии.  [c.19]

Сталь Термообработка Условия испытаний Продолжи- тельность испытаний Результаты испытаний Склонность к межкристаллитной коррозии в стандартном растворе  [c.96]

В химической промышленности и машиностроении применяются сварные конструкции из листового металла и труб с различной толшиной стенок. Поскольку дополнительная термообработка деталей больших размеров практически невозможна, необходимо иметь в виду опасность возникновения межкристаллитной коррозии. Несмотря на то что поверхность металла внешне остается неповрежденной, сцепление между отдельными зернами в стали может быть нарушено по всему сечению детали и привести к разрушению.  [c.100]

Межкристаллитная коррозия алюминия и его сплавов может распространяться локально на отдельных участках в местах концентрации напряжений. Причиной этого вида коррозии является отложение легирующих элементов по границам зерен. В алюминиевомедных сплавах межкристаллитная коррозия объясняется растворением обедненных медью границ металлов. Склонность алюминиевых сплавов к межкристаллитной коррозии зависит как от состава сплава, так и от термообработки или деформации. Алюминиевые сплавы, легированные магнием, не склонны к межкристаллитной коррозии. Алюминий высокой чистоты не подвергается межкристаллитной коррозии в соляной кислоте.  [c.123]

Сварные емкости. До 250° С Пластичны в горячем состоянии, при термообработке упрочняются, обрабатываются резанием, свариваются точечной сваркой хорошо, газовой и электросваркой — плохо. Сплав Д16 выше 100° С склонен к межкристаллитному растрескиванию.  [c.9]

Как уже отмечалось в обзорах [66, 68], концентрации углерода свыше 0,1% значительно повышают стойкость против КР. В то же время рост концентрации углерода в интервале 0,001—0,005% оказывает вредное воздействие. Высказывались предположения, что последний эффект обусловлен на столько индивидуальными свойствами углерода, сколько его взаимодействием с другими межузельными примесями, такими как азот [85]. Так или иначе, но при содержании —0,06% С имеет место минимум стойкости против КР. -Хорошо известно, что с возрастанием содержания углерода ускоряется сенсибилизация сталей при определенных термообработках, усиливающая в свою очередь межкристаллитную коррозию. Однако, вопреки распространенному мнению, способность к сенсибилизации (и к межкристаллитной коррозии вообще) не всегда коррелирует с восприимчивостью к КР [66] или водородному охрупчиванию [68, 74]. Ниже будет показана на примерах сплавов и других систем, что отклонения от подобной взаимосвязи встреча-  [c.70]


Термомеханическая предыстория материала может, по-видимому, оказывать существенное влияние и на стойкость к водородному охрупчиванию других суперсплавов [38, 118, 279, 287]. В качестве примера на рис. 42 показано влияние термообработки на листовой сплав Рене 41 [279] при термическом наводороживании в течение 1000 ч при температуре 650°С и давлении 1 атм. Необходимо отметить отрицательный эффект старения, приводящего к образованию у, а также охлаждения в печи от температуры обработки на твердый раствор (вероятно, путем образования г] на границах зерен, о чем свидетельствует межкристаллитный характер водородного разрушения [279]). В другом исследовании был обнаружен небольшой положительный эффект высокоэнергетической штамповки сплава Инконель 718 перед старением по сравнению с обычным материалом, состаренным после термообработки на твердый раствор уменьшение относительного сужения в результате выдержки в водороде при давлении 69 МПа снизилось от 72% при обычном старении до 60% в материале, подвергнутом термомеханической обработке (ТМО). Таким образом, образование у или у" после ТМО ухудшает свойства исследованных сплавов практически в такой же степени, как и в отсутствие ТМО. По-видимому, для упрочнения и повышения стойкости к KP решающее значение имеет улучшение субструктуры сплава при старении, предшествующем ТМО [160, 289]. Не исключено, что более сложные процессы обработки, включающие ТМО, позволяют добиться улучшения свойств никелевых сплавов.  [c.116]

К числу других разновидностей коррозионного разрушения относятся межкристаллитная коррозия в зоне прогрева некоторых сварных конструкций и коррозионное растрескивание под напряжением. Этих. типов коррозии легко избежать при правильном выборе режима термообработки и способа соединения деталей конструкции.  [c.60]

Для устранения межкристаллитной коррозии в сварном шве необходима термообработка-, нагрев Оо 1100 С с охлаждением в воде.  [c.693]

С помощью уравнения определяется пригодность стали с точки зрения склонности ее к межкристаллитной коррозии, а также минимальное количество карбида титана в стали данного химического состава с определенным размером зерна, при котором повторный нагрев до температуры 650° С этой склонности не вызывает. Вследствие неравномерного распределения температур при нагреве стальных листов, прутков и т. д. под закалку, а также в случае горячекатаного металла (без последующей термообработки) наблюдается различная склонность к межкристаллитной коррозии среди таких листов, прутков и т. д. одной партии и плавки. Если при протяжке труб пользуются углеродсодержащими смазками, науглероживается иногда внутренняя поверхность труб и в соответствии с этим у нее появляется склонность к межкристаллитной коррозии. В связи с этим для особо ответственных изделий необходимо проверять склонности к межкристаллитной коррозии каждого листа, прутка, заготовки, поковки и т. д. в отдельности.  [c.136]

Коррозионно-стойкие стали при соответствующем легировании и термообработке обладают высокой коррозионной стойкостью при комнатных и повышенных до 800 °С температурах как в атмосферной и газовой среде, так и в чистых и водных растворах кислот и щелочей, жидкометаллических средах и т.д. Характерное отличие этих сталей пониженное содержание углерода, обычно не превышающее 0,12 %, оказывающее решающее влияние на стойкость их к межкристаллитной коррозии (МКК). Благодаря этим свойствам их используют при изготовлении трубопроводов и аппаратов для химической и нефтяной промышленности.  [c.346]

Межкристаллитная коррозия вызывается местным обеднением хромом металла зерна возле границы, вследствие более низкой скорости диффузии хрома по сравнению с углеродом, при температурах ниже 900 °С. Однако если сталь при этих температурах выдерживать достаточно длительное время, несмотря на малую скорость диффузии хрома, его концентрация по объему зерна (периферийная и центральная) будет выравниваться и склонность стали к МКК уменьшится. Такая термообработка называется стабилизирующим отжигом. Его проводят обычно при температуре 850. .. 900 °С в течение 2. .. 3 ч.  [c.351]


Стойкость материала против межкристаллитной коррозии повышают выбором режима термообработки, снижением содержания примесей, легированием элементами, предотвращающими образование нежелательных фаз по границам зерен.  [c.161]

С целью минимизации восприимчивости аустенитных нержавеющих сталей к межкристаллитной коррозии может быть понижено содержание углерода менее чем до 0,03%, либо могут быть добавлены стабилизаторы для предотвращения обеднения хромом около границ зерен или для получения более однородного сплава может применяться термообработка в высокотемпературном растворе, называемая закалкой — отжигом. Восприимчивыми к межкристаллитной коррозии являются также алюминиевые, магниевые, медные и цинковые сплавы в неблагоприятных условиях.  [c.598]

В сплавах никеля с 30—50 % Сг в зависимости от конкретного химического состава (содержание хрома, дополнительных легирующих элементов и примесей), режима термообработки и агрессивности среды может развиваться либо межкристаллитная, либо структурно-избирательная коррозия. Вид коррозии определяется типом, морфологией и характером выделения вторичных фаз, что зависит от температурно-временных условий их образования [3.4, 3.8].  [c.177]

РДС, электроды ЦТ-15-1 для корневого шва, последующие слои ЦТ-15. Электроды ЦТ-26 для тех случаев, когда нет требований к стойкости против межкристаллитной коррозии. КТС и ЭШС. Для снятия сварочных напряжений рекомендуется термообработка  [c.510]

Влияние термообработки и фазового состава сплавов. Аустенитные коррозионностойкие стали показывают наибольшую устойчивость к питтинговой коррозии в закаленном состоянии. Отпуск нержавеющих аустенитных сталей в области температур, вызывающих склонность к межкристаллитной коррозии (650 °С) значительно понижает также их стойкость к питтинговой коррозии [41, 50]. Снижение коррозионной стойкости сталей после отпуска может быть связано с обеднением границ зерен хромом в результате выпадения карбидов хрома. Зоны, обедненные хромом, в связи с их худшей пассивируемостью, помимо их большей склонности к межкристаллитной коррозии могут стать местами преимущественного возникновения питтингов. Поэтому сварные швы на нержавеющих сталях могут иметь повышенную склонность к питтинговой коррозии.  [c.97]

Хотя характер термообработки, который вызывает склонность к межкристаллитной коррозии высокохромистых и хромоникелевых сталей типа Х18Н9, различен, что обусловлено различием скоростей процессов диффузии в твердых а- и у-растворах (скорость диффузии в а-фазе больше), процессы, приводящие к появлению этой склонности у сталей обоих типов, почти идентичны.  [c.424]

Межкристаллитная коррозия (МКК) — это локальное коррозионное разрушение по границам зерен металла, приводящее к потере прочности и пластичности. Межзереннае вещество, действующее как анод, контактирует с большой поверхностью самих зерен, являющейся катодом. Коррозия протекает быстро, глубоко проникая в металл и приводя иногда к катастрофическим разрушениям. Нержавеющие стали типа 18-8 или дюраль (4 % Си—А1), подвергнутые неправильной термообработке, склонны к МКК. Примером неэлектрохимического межкристаллитного разрушения может служить коррозия никеля при высокой температуре в се-русодержащей атмосфере. При этом происходит проникновение серы по границам зерен металла — см. [1, рис. 14 на с. 1109].  [c.28]

Уменьшение содержания углерода. Содержание углерода в промышленно выпускаемых нержавеющих сталях может быть уменьшено, но при этом резко увеличивается стоимость стали. Сплавы с низким содержанием углерода (например, <0,03 % С) обозначаются буквой L (304L, 316L и т. п.). При сварке или другого рода термообработке этих сталей, когда достигаются температуры сенсибилизации, существует несравненно меньшая опасность протекания межкристаллитной коррозии. Однако абсолютной устойчивостью к этому виду разрушений они не обладают.  [c.307]

Межкристаллитной коррозии могут подвергаться некоторые типы нержавеющей стали, имеющие высокое содержание углерода (0,05-3,15 % С). Она может иметь место, если нержавеющая сталь подвергалась термообработке, так что на границах зерен выпали карбиды хрома, а затем материал оказался подвержен воздействию кислого раствора или морской воды. Механизм реакции показан на рис. 105. Выпадение карбидов хрома имеет место только при определеных условиях для аустенитной стали преимущественно при 550-850 С. В этом случае говорят, что сталь сенсибилизирована. В результате выпадения карбида тонкий слой вблизи границы зерна настолько обедняется хромом, что сталь теряет свой нержавеющий характер. Сенсибилизация может оказаться результатом не только термообработки, но и сварки (см. 8.2) (рис. 106). При воздействии коррозивной среды зоны, обедненные хромом, совместно с остальной  [c.115]

Существует два вида межкристаллитной коррозии. Первый вид характерен для восстановительных и слабо окислительных сред и связан в основном с выделением карбидов хрома. На. практике этот вид коррозии встречается у сталей, содерл<ащих достаточное количество углерода, а также у сталей, подвергающихся нагреванию при температурах 450—800°С. Второй вид межкристаллитной коррозии наблюдается в сильно окислительных средах, например в кипящей концентрированной азотной кислоте, содержащей анионы СггО ", Мп0 , VOj, NOj или катионы Се + Fe +. Последний вид коррозии не связан с выделением карбидов хрома и протекает почти во всех высоколегированных сталях, даже когда они содержат незначительное количество углерода и прошли правильную термообработку. Такая коррозия часто наблюдается даже в кипящей 65%-ной азотной кислоте при наличии фаз с высоким содержанием хрома. При более низких концентрациях азотной кислоты заметного снижения коррозионной стойкости хромоникелевых сталей не наблюдается и даже при температуре кипения они обладают хорощей устойчивостью.  [c.94]


Строение поверхности излома сплавов с 12 % Мп позволяет предположить, что охрупчивание сплава вызвано ликвацией по химическому составу по границам зерен первичного аустенита. Однако имеются данные [7] не в пользу этого предположения. Микрорентгеноспектральным анализом поверхности межкристаллитного излома закаленного сплава Fe—12Мп — 0,2Ti не обнаружено значительной разницы в локальном химическом составе по сравнению с результатами, полученными при анализе массивного транскристаллитного излома, что свидетельствует об отсутствии значительной ликвации по химическому составу по границам зерен при аустенизирующей термообработке. i Возможно, хотя и маловероятно, что охрупчивание по границам зерен вызвано сегрегациями столь малого размера, что их невозможно обнаружить при данном методе анализа. Образование таких сегрегаций обязательно долж-  [c.261]

Важный аспект термообработки алюминиевых сплавов связан с выбором скорости охлаждения при закалке от температуры обработки на твердый раствор. Этот фактор может влиять на стойкость к КР сплавов серий 2000 и 7000. В естественно состаренных сплавах серии 2000 такое влияние заметно при скоростях охлаждения менее 550 К/с [2, 128]. В работе [157] это объяснялось образованием зернограничных выделений, богатых медью, при сравнительно медленном охлаждении. Низкие скорости охлаждения пp f закалке ускоряют также межкристаллитную коррозию [128]. Изделия из сплавов серии 2000 толщиной свыше примерно 6 мм необходимо подвергать искусственному старению [2], поскольку в этом случае нельзя обеспечить достаточно высокую скорость охлаждения при закалке (искуственным называют старение при температуре выше комнатной).  [c.90]

БИТНОГО скола при КР всех а-сплавов, а также некоторых р-спла-ВОВ в нейтральных водных растворах хорошо коррелирует с общим характером растрескивания, представленным на рис. 83. Однако в определенных условиях термообработки некоторые из р-сплавов разрушаются путем межкристаллитного растрескивания (рис. 87). Для такого растрескивания, по-видимому, необходимо наличие в видманштеттовой структуре тонких выделений а-фазы в матрице р-фазы. Такие разрушения наблюдали в следующих сплавах при термообработках [19, 105]  [c.379]

Сварные соединения или нанлавка арматуры из сталей аустенитного класса испытываются на стойкость против межкристаллитной коррозии. Необходимость и метод испытаний устанавливаются техническими условиями на изготовление арматуры и указаниями рабочих чертежей. Испытания и оценка качества проводятся в соответствии с требованиями ГОСТ 6032—58. Испытания выполняются по методу AM с дополнительным провоцирующим нагревом (в случае термообработки шва или наплавки) или без него.  [c.219]

Существенным недостатком этой стали является её склонность к межкристаллитной коррозии вследствие выделения (при нагреве стали) из твёрдого раствора по границам зёрен хромосодержащих карбидов и сопутствующего этому обеднения близлежащих участков зёрен хромом. Интенсивность этого процесса зависит от содержания углерода сталь с содержанием менее 0,07о/д С практически не подвержена межкристаллитной коррозии, с содержанием 0,08—0,14%С — подвержена ей в небольшой степени более высокое содержание углерода приводит к интенсивному развитию межкристаллитной коррозии. Во избежание этого сталь марки Х18Н9 применяется после термообработки (закалки), обязательной после сварки.  [c.490]

Сталь марки Х18Н9Т не требует термообработки после сварки, так как при наличии в ней связывающего углерод титана она не подвержена межкристаллитной коррозии. Сталь применяется в авиационной промышленности— для патрубков и коллекторов выхлопных систем в автотракторной — для газогенераторов в текстильной — для аппаратов крашения шелка для сварочных электродов и пр.  [c.490]

Сталь марки Х18Н9М применяется для деталей и аппаратуры, работающих в условиях воздействия сернистой кислоты под давлением, 3—4%-ной серной кислоты, кипящей фосфорной и уксусной кислот, горячих растворов белильной извести и сульфатных щёлоков. После сварки требуется термообработка, так как сталь подвержена межкристаллитной коррозии.  [c.490]

Ферритные хромистые стали подвержены межкристаллитной коррозии. Появление последней связано с выпадением карбидов. Вследствие малой растворимости углерода в феррите карбиды, имеющиеся встали, переходятв твердый раствор при более высоких, температурах, чем в случае аустенитных сталей. При охлаждении карбиды выделяются по границам зерен. При этом, по мнению Э. Гудремона [111,62], происходит обеднение хромом границ зерен и понижение их устойчивости. И. А. Левин и С. А.Гинцберг[П1,154] используя методику микроэлектрохимических исследований, показали, что границы зерен в хромистых сталях поляризуются слабее, чем основное зерно. Диффузия хрома вобъемноцентрированной решетке феррита происходит более интенсивно, чем в аустените. В связи с этим при медленном охлаждении с высоких температур или при длительном отжиге в интервале температур 550—700° С наблюдается коагуляция карбидов и выравнивание концентрации хрома. Ферритные хромистые стали при этом нечувствительны к межкристаллитной коррозии. В полуферритных сталях межкристаллитная коррозия проявляется в более слабой степени. В двухфазной стали границы зерен феррита и аустенита по разному чувствительны к межкристаллитной коррозии после различных видов термообработки. Для феррита опасно быстрое охлаждение, для аустенита — отпуск при температурах 550—700° С. Устраняется межкристаллитная коррозия нагревом при 500—700° С в случае феррита и закалкой при температуре 1050° С в случае аустенита. Поскольку мартенситные хромистые стали (для снятия закалочных напряжений) после сварки всегда подвергаются отжигу, межкристаллитной коррозий они фактически  [c.176]

На Черепетской ГРЭС (номинальные рабочие параметры пара перед турбиной — давление 170 ат, температура 550° С) с котлами ТП-240 барабанного типа коррозионные повреждения под напряжением также наблюдались в конвективной части пароперегревателей котлов № 1 и № 2 в первый период эксплуатации. Конвективные пароперегреватели были изготовлены из стали 1 Х14Н14В2М(ЭИ257) в виде труб размером 32 X 5,5 мм. Изгибы труб радиусом 55 мм и 105 мм после холодной деформации термообработке не подвергались. На котле № 1 за период 1863 час эксплуатации было зарегистрировано четыре случая разрушений, на котле № 2 за 767 час — 59 случаев. Разрушения происходили исключительно в нижних изгибах малого радиуса (г = 55 мм). Трещины появлялись главным образом на внутренней поверхности труб. Металлографическое исследование показало, что трещины сначала имели межкристаллитный характер, а затем они развивались как по границам, так и по телу зерен. В этот период изгибы труб, как указано выше, не были аусте-низированы кроме того, при термической обработке они не могли свободно перемещаться. Было произведено 50 пусков котла № 1 за период 1863 час испытаний и 22 пуска котла №2 за период 757 час, что способствовало появлению повышенных механических напряжений в металле и упариванию воды в изгибах (недренируемого перегревателя). Перед первым пуском котлы № 1 м № 2 длительно промывали щелочью, а пар из барабана со значительной концентрацией щелочей конденсировался в вертикальных петлях перегревателя. После проведения аустенизации изгибов труб радиусом 55 Л1м с нагревом по методу электросопротивления разрущений такого характера уже не наблюдалось. В процессе эксплуатации не было также случаев повреждения сварных соединений труб пароперегревателей, изготовленных контактным способом. При исследовании двух контрольных стыков паропровода, не прошедших стабилизации, в одном из них, проработавшем 3500 час, была обнаружена трещина глубиной 5,1 мм у корня шва — на расстоянии примерно 5 мм от наплавленного металла. Авторы работы считают, что причина возникновения этой трещины — повышение концентрации солей и их агрессивность при упаривании конденсата между трубой и подкладным кольцом в периоды останова и пуска котла. Разрушения межкристаллит-ного характера отмечены в нескольких случаях, в том числе и в дренажных трубках и в сварных соединениях труб (размеры 219 X X 27 мм) в месте контакта поверхности трубы с подкладным кольцом. В трубе размером 133 X 18 мм, находившейся в течение года в кон-  [c.342]


При отсутствии требования по стойкости металла шва к межкристаллитной коррозии. При сварке труб с толщиной стеиин до 25 мм и диаметром до 219 мм и толщиной стенки не более 18 мм при диаметре свыше 219 до 325 мм без последующей термообработки  [c.363]

Свариваемость двухфазных хромоникелевых сталей переходных классов по сравнению с однофазными выше, особенно сопротивляемость образованию трещин и межкристаллитной коррозии. Мартенситно-стареющие коррозионностойкие стали (08Х15Н5Д2Т и др.) могут иметь в зоне сварного соединения ослабленные участки в отношении величины ударной вязкости и стойкости против коррозии. Антикоррозионные свойства сварных соединений восстанавливаются после полной термической обработки. Рекомендуется для этих же целей отпуск перед сваркой при 600—650 °С. Для предотвращения старения металла в зоне сварного соединения в процессе эксплуатации конструкции и последующего снижения его пластических свойств применяют термообработку после сварки (при 600—650 °С). Хромоникелевые стали сваривают практически всеми методами. Режимы стремятся подбирать так, чтобы сварка происходила при малых значениях погонной энергии. Успешно сваривают хромоникелевые стали контактной сваркой.  [c.511]

Свариваемость рассматриваемых сталей и сплавов затрудняется многокомпонентностью их легирования и разнообразием условий эксплуатации сварных конструкций (коррозионная стойкость, жаростойкость или жаропрочность). Общей сложностью сварки является предупреждение образования в шве и околошовной зоне кристаллизационных горячих трещин, имеющих межкристаллитный характер, наблюдаемых в виде мельчайших микронадрывов и трещин. Горячие трещины могут возникнуть и при термообработке или работе конструкции при повышенных температурах. Образование горячих трещин наиболее характерно для крупнозернистой структурьг металла шва, особенно выраженной в многослойных швах, когда кристаллы последующего слоя продолжают кристаллы предыдущего слоя.  [c.353]

Трещины по разупрочненной прослойке зоны металла термического влияния (ЗТВрп) на расстоянии 2-4 мм от границы сплавления со стороны корпуса тройника 4.ПЗ, б Межкристаллитный хрупкий xapai rep повреждения. Магистральная трещина на участке металла с мелким зерном. Края трещины поражены порами и микротрещинами ползучести. Структурная и механическая неоднородность Конструктивные причины чрезмерное ослабление прочности корпуса тройника отверстием под штуцер повышенная концентрация напряжений и деформаций в зоне углового шва. Эксплуатационные причины действие повышенных изгибающих нагрузок, вызванных нарушением проектного состояния опорно-подвесной системы, неудовлетворительной работой дренажей, защемлением паропровода, забросами воды и др. Технологические причины сварка углового шва с повышенным тепловложением чрезмерно высокая погонная энергия, недопустимо высокий подогрев при сварке нарушение в технологии термообработки основного металла недоотпуск  [c.269]

Для изготовления коррозионностойкой аппаратуры на химических заводах наиболее часто применяют аустенитные нержавеющие стали 1Х18Н9Т, Х18Н12М2Т, Х18Н12МЗТ. Эти стали после сварки обычно не подвергаются дополнительной термообработке, которая в условиях химического завода была бы затруднительной. Указанные сплавы содержат присадку титана, предупреждающего межкристаллитную коррозию. Тем не менее и у этих сталей может возникнуть межкристаллитная коррозия, если при электросварке будут допущены грубые ошибки.  [c.169]


Смотреть страницы где упоминается термин Межкристаллитная термообработки : [c.365]    [c.156]    [c.72]    [c.280]    [c.76]    [c.382]    [c.152]    [c.265]    [c.491]    [c.123]    [c.89]    [c.614]    [c.172]   
Структура коррозия металлов и сплавов (1989) -- [ c.64 , c.70 , c.83 ]



ПОИСК



Термообработка



© 2025 Mash-xxl.info Реклама на сайте