Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кручение сжатого стержня

Деформация кручения сжатого стержня. При деформации кручения  [c.734]

На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки. Следовательно, при чистом изгибе, как и при растяжении (сжатии) и кручении круглых стержней, будет справедлива гипотеза плоских сечений.  [c.241]

Нередко имеем комбинацию изгиба с кручением, а также с растяжением или сжатием стержня.  [c.18]


Это уравнение совпадает с (9.7.5) (за исключением множителя в правой части) таким образом, задача о кручении ортотропного стержня свелась к задаче о кручении изотропного стержня, сечение которого подвергнуто аффинному преобразованию (9.12.3), т. е. ограничено в плоскости т) контуром F, который получается из контура Г в плоскости ха путем растяжения или сжатия в направлении координатных осей. Граничное условие в плоскости Ха на контуре Г остается прежним F = С. Это же условие выполняется и на преобразованном контуре Г, поскольку между и Г существует точечное соответствие.  [c.309]

Сведения о местных напряжениях, приведенные выше, распространяются не только на случаи центрального растяжения и сжатия стержней, но также изгиба, кручения и на сложные виды деформаций.  [c.73]

При расчетах на изгиб, кручение, сложное сопротивление, а также при расчетах сжатых стержней на устойчивость используются более сложные геометрические характеристики сечений статический момент, а также осевой (или экваториальный), полярный и центробежный моменты инерции сечений. Выражения этих характеристик отличаются от выражения (5.1) тем, что у них под знаки интеграла входят произведения элементарных площадок ЛР на функции координат у, г, р этих площадок (рис. 5.1). Таким образом, указанные геометрические характеристики зависят не только от формы и размеров сечения, но также от положения осей и точек (полюсов), относительно которых они вычисляются.  [c.135]

S.9.5. РАСТЯЖЕНИЕ, СЖАТИЕ, ИЗГИБ И КРУЧЕНИЕ ТОНКОСТЕННЫХ СТЕРЖНЕЙ С ЗАМКНУТЫМ КОНТУРОМ СЕЧЕНИЯ  [c.72]

РАСТЯЖЕНИЕ. СЖАТИЕ, ИЗГИБ И КРУЧЕНИЕ ТОНКОСТЕННЫХ СТЕРЖНЕЙ  [c.73]

Так, например, при круговом изгибе или растяжении-сжатии, а также при кручении круглых стержней с кольцевыми канавками, переходом от одного сечения к другому по галтели, с резьбой или гладких L = nd, где rf в мм — диаметр рабочего сечения детали.  [c.463]

Изложив общую теорию, авторы применяют свои уравнения в ряде частных случаев. Они показывают, каким образом единственную входящую в их уравнения упругую постоянную можно получить опытным путем из испытаний на растяжение или на равномерное сжатие. Далее, они ставят перед собой задачу о полом круговом цилиндре и выводят формулы для напряжений, вызываемых равномерным внутренним или внешним давлением. Эти формулы используются для вычисления необходимой толщины стенок цилиндра при заданных значениях давлений. В своих исследованиях они пользуются теорией наибольшего напряжения, но предусмотрительно обращают внимание на то, что каждый элемент цилиндра находится в условиях двумерного напряженного состояния и что предел упругости, определенный из испытания на простое растяжение, может оказаться неприменимым к этому более сложному случаю. Следующими вопросами, разобранными в этой части их работы, являются задачи о простом кручении круглого стержня, о сфере, подвергающейся действию сил тяжести, направленных к ее центру, и о сферической оболочке, нагруженной равномерно распределенным внутренним или наружным давлением. Для всех этих случаев авторами выводятся правильные формулы, которые с тех пор нашли разнообразные применения в технике.  [c.142]


При круговом изгибе или растяжении-сжатии, а также при кручении круглых стержней диаметром d в рабочем сечении (гладких, с кольцевыми канавками, со ступенчатым переходом от одного сечения к другому по галтели, с резьбой, с кольцевым выступом и т.п.) параметр рабочего сечения L mi.  [c.96]

Подбор сечений для продольно сжатых стержней часто представляет собой решающую часть общего расчета конструкции, поскольку разрушение такого стержня обычно вызывает катастрофу. Более того, рассчитывать продольное сжатие стержней труднее, чем изгиб и кручение балок, поскольку поведение стержней при этом оказывается более сложным. Если длина продольно сжатого стержня значительно больше его ширины, то он может перестать выполнять свои функции вследствие потери устойчивости, т. е. вследствие изгибания и появления боковых прогибов, что происходит раньше, чем конструкция выйдет из строя непосредственно из-за сжатия. Потеря устойчивости может быть либо упругой, либо неупругой в зависимости от гибкости стержня. Ниже в первую очередь будет обсуждаться поведение длинных тонких стержней из упругого материала.  [c.387]

Продольный изгиб центрально сжатых стержней представляет собой очень серьезную опасность именно потому, что он наступает внезапно, без всяких предвестников, и развивается молниеносно. Этим он резко отличается от всех ранее изученных нами явлений (растяжение, кручение, изгиб и т. п.), при которых рост нагрузки сопровождается пропорциональным нарастанием деформаций и напряжений. Известен ряд очень серьезных катастроф крупных сооружений, вызванных продольным изгибом, который возник вследствие неверного расчета, плохого качества работ или неправильного порядка сборки.  [c.360]

Замкнутые профили. Замкнутые (трубчатые) профили обладают несравненно большей (в сотни раз) крутильной жёсткостью, чем открытые профили той же конфигурации, и эта разница тем резче, чем стенка тоньше. Напряжения стеснённого кручения играют в них второстепенную роль и учитываются только при вытянутой форме профиля, например, в несущей конструкции крыла самолёта. В смысле общей устойчивости при сжатии стержни с замкнутым профилем не отличаются от массивных. Если ширина плоской стенки больше 40 о, необходима проверка местной устойчивости.  [c.225]

Всестороннее сжатие (244). Растяжение цилиндрического стержня (245). Деформация цилиндрического стержня под действием собственного веса (246). Чистый изгиб стержня (248). Кручение призматических стержней (250). Циркуляция касательных напряжений (258). Различные формы постановки задачи о кручении (259). Мембранная аналогия Прандтля (266).  [c.8]

Очевидно, что при депланации сечений одни волокна будут удлиняться, другие укорачиваться, а значит, будут и нейтральные волокна, не подвергающиеся ни растяжению, ни сжатию. Следовательно, в сечении будут точки, в которых нормальные напряжения обратятся в нуль, так называемые нулевые точки сечения. Так как при изгибе и кручении тонкостенных стержней сечения не остаются плоскими, то нулевые точки обычно не лежат на одной прямой, нейтральные волокна не группируются в нейтральный слой. Отыскание нулевых точек сечения, как мы увидим ниже, имеет существенное значение для определения секториальных нормальных на-пряжений  [c.535]

Если на прямой стержень действуют произвольные внешние силы и пары сил, то их необходимо разложить на силы осевого направления с точкой приложения в центре тяжести сечения (эти силы вызывают растяжение или сжатие стержня), на силы, перпендикуляр.ные к оси сечения и проходящие через центр кручения (стр. 67), которые вызывают изгиб и сдвиг, на пары сил, лежащие в плоскостях, параллельных оси, которые вызывают изгиб, и на пары сил, перпендикулярные к осн стержня, причем последние вызывают кручение.  [c.80]

В 10 было показано, что при растяжении или сжатии стержня в нем накапливается потенциальная энергия деформации, равная работе внешних сил. То же самое происходит и при деформации кручения. Если деформации стержня при кручении являются упругими, то после снятия нагрузки, вызвавшей деформацию, стержень будет раскручиваться. При этом он может совершить работу за счет накопившейся в нем энергии деформации.  [c.138]


Расчет рамных конструкций. Стержни пространственной рамы работают на изгиб, кручение, растяжение и сжатие стержни плоских рам при нагружении в плоскости работают на изгиб и осевую силу. Плоские рамы рассчитываются методами строительной механики [11], расчет пространственных рам лучше выполнять численными методами на ЭВМ (например, методом конечного элемента с использованием известных программ).  [c.416]

В первом (прямолинейном) состоянии сжатого стержня главные компоненты кривизны и кручение  [c.283]

Изложенная в главе ХИ теория устойчивости прямолинейной формы равновесия сжатых монолитных стержней основывается на предположении, что образование криволинейных форм равновесия таких стержней возможно только путем их изгиба (эйлерова форма потери устойчивости). Это предположение оправдывается как для монолитных, так и для тонкостенных стержней закрытого профиля, например тонкостенной трубы. Наряду с этим экспериментальное исследование потери устойчивости тонкостенных сжатых стержней открытого профиля показывает, что образование криволинейных форм равновесия происходит в этом случае, вообще говоря, путем одновременного изгиба и кручения стержня.  [c.939]

В смысле оценки влияния кручения на несущую способность центрально сжатого стержня открытого профиля интересны следующих три факта.  [c.162]

Кручение сжатого по боковой поверхности стержня. Боковая поверхность стержня нагружена давлением, пропорциональным осевой координате i — qa n. Непосредственно проверяется, что уравнениям статики в объеме и на поверхности  [c.242]

Разработанные установки позволяют проводить исследования как в условиях однородного напряженного состояния (растяжение — сжатие, кручение тонкостенных стержней) [4—6], так и в условиях неоднородного напряженного состояния (изгиб, кручение) [6—8]. В случае испытаний в условиях неоднородного напряженного состояния рассчитывались действительные значения максимальных напряжений, которые имели место в поверхностных слоях неупруго деформируемых образцов и соответствуювще им действительные значения неупругих деформаций и рассеянных энергий [1, 6].  [c.4]

Практическая важность угих глав обусловлена необходимостью обеспечения той раиновеснои формы упругой системы (сжатых стержней или иластии, балок на жестких или упругих опорах, цилиндрических оболочек и др.), которая принята конструктором в качестве исходной при расчете соответствующей деформации (сжатия, кручения или изгиба). Превышение так называемых критических, пли эйлеровых, нагрузок, вызванное нарушением расчетной схемы, может привести к аварийным ситуациям и к разрушению корпуса. В связи с этим большое значение приобретает правильное определение критических (эйлеровых) напряжений, позволяющих с учетом необходимого запаса прочности, который, в свою очередь, завпсит от достоверности знания внешней нагрузки, точности расчег-ных формул, уверенности в механических качествах материала и тщательности выполнения конструкции, назначить допускаемые напряжения.  [c.47]

К 1914 г. относится начало работ по теории упругости Л. С. Лейбензона — прежде всего по устойчхгвости упругого равновесия длинных сжатых стержней с первоначальным кручением около прямолинейной оси стержня, а затем по устойчивости сферической и цилиндрической оболочек. Практическое значение первой задачи ясно из того, что всем известные теперь сетчатые башни системы В. Г. Шухова составлены из закрученных прямолинейных образующих.  [c.264]

Допускаемую величину касательного напряжения при чистом сдвиге можно было бы определить таким же путем, как и при линейном растяжении и сжатии, т. е. экспериментально установить величину опасного напряжения (при текучести или при разрушении материала) и, разделив последнее на тот или иной коэффициент запаса прочности, найти допускаемое значение касательного напряжения. Однако этому на практике мешают некоторые обстоятельства. Деформацию чистого сдвига в лабораторных условиях создать очень трудно — работа болтов и заклепочных соединений осложняется наличием нормальных напряжений при кручении сплошных стержней круглого или иных сечений напряженное состояние неоднородно в объеме всего стержня, к тому же при пластической деформации, предшествующей разрушению, про 1сходнт перераспределение напряжений, что затрудняет определение величины опасного напряжения при испытаниях на кручение тонкостенных стержней легко может произойти потеря устойчивости стенки стержня. В связи с этим допускаемые напряжения при чистом сдвиге и кручении назначаются на основании той или иной теории прочности в зависимости от величины устанавливаемых более надежно допускаемых напряжений на растяжение.  [c.145]

При определении суммарных перемещений узлов ферм (8.10.7) часто учитывают лишь первый иктехрал, так как эти перемещения зависят в основном от растяжения (сжатия) стержней фермы. В расчетах пространственных рам основными являются второй, третий и четвертый интегралы, так как в этом случае преобладают перемещения, обусловленные кручением и изгибом.  [c.78]

Для выполнения расчета по недеформи-рованиой схеме необходимо сформировать матрицу Я жесткости системы по направлению перемещений Zk (или сил iV)> как матрицу реакций для системы с наложенными в каждом узле шестью связями. Она вычисляется и формируется в памяти ЭВМ поэлементно последовательно формируются матрицы жесткости каждого стержня и из их блоков составляется матрица жесткости системы. При этом учитываются деформации растяжения (сжатия), кручения, изгиба стержней, в общем случае - с учетом сдвигов поперечных сечений при изгибе.  [c.105]


Вероятно, впервые рассматриваемый метод исследования напряжений в пластической области был использован Н. Н. Да-виделко вым с сотрудниками для экспериментального определения напряженного состояния при пластическом кручении круглых стержней. В работе [И] этим методом исследовано плоское напряженное состояние, возникающее при радиальном сжатии диска.  [c.78]

РЕЗ — разрушение материала под действием касательных напряжений при любых способах нагружения (растяжении, кручении, сжатии, изгибе и др.). Наступлению С. всегда предшествует пластич. деформация, без к-рой разрушение от касательных напряжений называют сколом. Термин С. применяют для обозначения разрушения болтов, заклепок, шпилек и др. путем принудит, перемещения перпендикулярно оси срезаемого изделия. В этом случае различают одинарный С. (одна поверхность С.) и двойной С, (две поверхности С.). Однако у материалов с низким сопротивлением отрыву при таком нагружении может происходить разрушение путем отрыва по поверхностям, наклонным к оси стержня. В чистом виде С. обычно нельзя осуществить ввиду участия смятия, пек-рой доли изгиба п т. п. Наиболее приближается к условия.м чистого С. разрушение при кручении полых ци-линдрич. стерн<пей из пластичных материалов (по поверхностям, перпендикуляр-НЫ.М к оси стержня)., Я. в. Фридман.  [c.195]

В связи с только что упомянутой проблемой приобрел практическую важность и вопрос о кручении тонкостенных элементов открытых профилей. Простейший случай потери устойчивости в крутильной форме уголкового профиля (рис. 196) был уже рассмотрен ). Общее исследование потери устойчивости в крутильной форме тонкостенных элементов, подобных тем, что применяются в конструкциях самолетов, было выполнено Г. Вагнером ). Более строгое обоснование этой теории дал Р. Каппус ). За время, истекшее после опубликования этих работ, немало инженеров поработало над изучением поперечного выпучивания балок и крутильной формы потери устойчивости сжатых тонкостенных элементов результаты этих исследований нашли широкое использование не только в самолетостроении, но также и в строительстве мостов. Здесь следует отметить работы Гудира ), исследовавшего устойчивость не только отдельного сжатого стержня при различных условиях, но также и стержня, жестко соединенного с упругими пластинками. Пользуясь теорией большой деформации, он дал строгое подтверждение фактической правильности той предпосылки, на  [c.494]

Эти простейшие задачи на основании различных произвольных допущений относительно деформации тел были разрешены значительно ранее установления обпщх уравнений теории упругости. Сюда относятся случаи растяжения и сжатия призматических стержней, задача о всестороннем равномерном сжатии, чистый изгиб призматических стержней и пластинок и кручение круглых стержней. Все эти вопросы излагаются в элементарном курсе сопротивления материалов. Здесь мы еще раз возвращаемся к ним, чтобы на самых простых примерах показать общий ход решения задач теории упругости и выяснить общий метод определения перемещений точек упругого тела, если известно распределение напряжений.  [c.62]

При кручении цилиндрического стержня парой сил, действующих в плоскости, перпендикулярной к оси стержня, в нем происходят сдвиги вследствие поворотов одних сечений относительно других и возникает чистый сдвиг. Эпюры напряжений при чисто.м сдвиге получаются путем наложения эпюр при одноосном растяжении напряжением 5] и одноосном сжатии напряжением 5з = —5 в перпендикулярном наиравленпи.  [c.95]

Найдем составляющие напряжения по наклонным площадкам при кручении цилиндрического стержня. Для этого можно прежде всего воспользоваться выводами, которые были получены вьипе при определении напряжений по площадкам под углом 45° в случае растяжения по одной оси и сжатия по другой, причем = — °у.  [c.114]

В дальнейшем обобщенная диаграмма циклического деформирования была распространена на асимметричные циклы напряжений и на деформирование в условиях повышенных температур с привлечением гипотезы старения. В такой постановке были решены задачи об изгибе и кручении сплошных стержней, о растяжении — сжатии полосы с отверстием и стержней кругового сечения с кольцевыми выточками при циклическом деформировании (Р. М. Шнейдерович, А. П. Гусенков и Г. Г. Медекша, 1966, 1967).  [c.412]

Не только модели Коссера-Тимошенко и Кирхгофа используются в динамике стержней. Кручение тонкостенных стержней описывается уравнением (9.11.13), а не (2,8), Для растяжения — сжатия при высокочастотных и коротковолновых процессах вместо (2,7) лучше использовать модель Миндлина-Геррманна ( 8,15).  [c.243]


Смотреть страницы где упоминается термин Кручение сжатого стержня : [c.5]    [c.149]    [c.547]    [c.115]    [c.280]    [c.501]   
Теория упругости (1970) -- [ c.734 ]



ПОИСК



Кручение стержней

Стержень сжатый



© 2025 Mash-xxl.info Реклама на сайте