Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллические дефекты (несовершенства)

Кристаллические дефекты (несовершенства) 20 Кристаллических зерен образование 45  [c.496]

Другим важнейшим видом несовершенства кристаллического строения являются так называемые дислокации. Представим себе, что в кристаллической решетке по каким-либо причинам появилась лишняя полуплоскость атомов, так называемая экстраплоскость (рис. 8). Край 3—3 такой плоскости образует линейный дефект (несовершенство) решетки, который называется краевой дислокацией. Краевая дислокация может распространяться на многие тысячи параметров решетки, для нее вектор Бюргерса (см. с. ООО) перпендикулярен экстраплоскости. В реальных металлах дислокации смешанные на некоторых участках — краевые, на других — винтовые.  [c.28]


Представим себе, что в кристаллической решетке по каким-либо причинам появилась лишняя полуплоскость атомов, так называемая экстраплоскость Q (рис. 21). Край 3—3 такой плоскости образует линейный дефект (несовершенство) решетки, который называют крае-  [c.63]

Изучение строения металлов с помощью рентгеноструктурного анализа и электронного микроскопа позволило установить, что внутреннее кристаллическое строение зерна не является правильным. В кристаллических решетках реальных металлов существуют различные дефекты (несовершенства), которые нарушают связи между атомами и оказывают влияние на свойства металлов,  [c.94]

Изучение строения металлов с помощью рентгеноструктурного анализа и электронного микроскопа позволило установить, что внутреннее кристаллическое строение зерна не является правильным. В кристаллических решетках реальных металлов существуют различные дефекты (несовершенства), которые нарушают связи между атомами и оказывают влияние на свойства металлов. Различают следующие структурные несовершенства точечные, линейные и поверхностные, которые характеризуются малыми размерами в трех, двух и одном измерении соответственно.  [c.120]

Одним из видов несовершенств кристаллического строения является наличие незанятых мест в узлах кристаллической решетки, или иначе — вакансий, или атомных дырок (см, рис. 7,а). Такой точечный дефект решетки играет важную роль при протекании диффузионных процессов в металлах (подробнее см. в гл. ХП1. п. 1).  [c.28]

Усовершенствование рентгеноструктурного анализа позволяет изучать и дефекты кристаллического строения. Ширина (размытость) рентгеновских линий свидетельствует о степени несовершенств кристаллического строения. В частности, суммарная плотность дислокаций пропорциональна ширине линий  [c.36]

При пластической деформации в металле образуются, перемещаются и взаимодействуют с другими дефектами кристаллического строения линейные несовершенства (дислокации).  [c.81]

В процессе кристаллизации в твердом металле возникают дефекты кристаллического строения. Закономерность строения кристаллической решетки нарушается наличием несовершенств. Несовершенства кристаллического строения вызывают большие флуктуации внутренней энергии, влияют на прочность, пластичность, деформационную способность металлов, их коррозионную стойкость, склонность к хрупким разрушениям, на технологи--ческую прочность при сварке.  [c.467]


Линейные дефекты малы в двух измерениях, в третьем они могут достигать длины кристалла (зерна). К линейным дефектам относятся цепочки вакансий, межузельных атомов и дислокации. Дислокации являются особым видом несовершенств в кристаллической решетке. С позиции теории дислокаций рассматриваются прочность, фазовые и структурное превращения.  [c.265]

Рассеиваться фононы могут не только на фононах, но и на точечных дефектах (например, на примесных атомах), на линейных (дислокации), на границах зерен в поликристаллах и т. д. Перечисленные несовершенства кристаллической решетки могут поглощать и энергию, и импульс фонона. Поэтому в кристаллах с большим количеством дефектов длина свободного пробега фононов I мала при любых температурах.  [c.46]

За последние десятилетия в физике твердого тела получило широкое распространение представление о несовершенствах кристаллической решетки, называемых дислокациями. Этим несовершенствам приписывается основная роль при объяснении ряда особенностей поведения реальных кристаллов. Механизм пластической деформации, ползучести, разрушения, рассеяния энергии при циклическом деформировании связываются большинством современных авторов с перемещением дислокаций внутри кристалла. Дислокационные представления используются также для объяснения механизма роста кристалла. Возможные дефекты кристаллической решетки не ограничиваются, конечно, одними дислокациями этим термином называются дефекты особого рода, обладающие совершенно определенными свойствами. Однако дислокационные представления, как оказалось, имеют настолько общий характер, что на их основе можно построить очень большое количество разного рода моделей, объясняющих те или иные свойства реального кристалла, и выбрать из этих моделей те, которые наилучшим образом отвечают опытным данным.  [c.453]

Линейные несовершенства кристаллической решетки имеют размеры, близкие к атомным в двух измерениях и значительную протяженность в третьем. К этому виду дефектов относятся дислокации, простейшими из которых являются краевые, винтовые и смешанные.  [c.30]

Модуль упругости Е практически не зависит от химического состава и термической обработки стали. Приведенный здесь предел прочности установлен экспериментальным путем. Он во много раз (в 100 раз и более) меньше теоретических значений, подсчитанных исходя из сил межатомных связей. Это объясняется отклонением строения реальных кристаллов металла от идеального строения кристаллических решеток, т. е. несовершенством (дефектами) кристаллических решеток реальных металлов. Наибольшее влияние на снижение прочности металла оказывают  [c.37]

Второй способ повышения реальной прочности металлов заключается в изменении структурного состояния материала при заданном постоянном уровне сил межатомных связей. Низкие значения прочности технических ЛОО металлов и сплавов объясняются неоднородностью структуры — наличием неравномерно распределенных несовершенств кристаллического строения (дислокаций, вакансий, чужеродных атомов) и границ зерен, а также металлургических дефектов (пор, химической неоднородности и т. д.). Это приводит к резкому снижению энергоемкости металла ( мех вследствие неоднородного характера поглощения энергии различными объемами металла, т. е. к уменьшению величин 1 5 и п [см. уравнение (10)].  [c.22]

В таком случае приложение нагрузки т (меньшей предела текучести) к металлу, имеющему несовершенства кристаллического строения, вызовет неоднородное распределение внутренних напряжений в очагах локального плавления приложенное напряжение преобразуется в гидростатическое давление (фазовое состояние близко к жидкому, дальний порядок отсутствует) а в остальной части кристалла напряжение в элементарных объемах подчиняется законам упругости твердого тела. Таким образом, в местах дефектов структуры типа дислокаций возможно равенство т = Р. Например, в работе [16] при вычислении свободной энергии вакансий постулируется справедливость этого соотношения для некоторых областей материалов .  [c.28]


Кристаллические тела не идеальны в них всегда в огромном количестве суш,ествуют нарушения структуры, называемые несовершенствами (или дефектами). В силу ряда- причин отдельные кристаллы в реальном металле не имеют возможности принять правильную форму. Кристаллы неправильной формы называются зернами или кристаллитами. Их размер от 0,1 до 10 мкм. Напомним, что разрешающая способность микроскопа равна длине волны све-  [c.31]

Водород, находящийся в стали, стремится концентрироваться в зонах с максимальной свободной энергией, т.е. во всех несовершенствах кристаллической решетки, особенно по границам зерен металла. Он остается в протонной форме, если электростатические силы взаимодействия достаточно велики, но может переходить в атомарное и даже молекулярное состояние при увеличении размеров дефектов решетки. Именно поэтому в межкристаллитной прослойке концентрируются продукты реакции и молекулярный водород (рис. 32).  [c.164]

Участок Ьс представляет упрочнение металлов и сплавов вследствие увеличения числа несовершенств в кристаллической структуре. С увеличением плотности дислокаций уменьшается расстояние между дислокациями, а это приводит к усилению взаимодействия дислокаций между собой и с другими дефектами решетки. При этом сопротивление движению дислокаций возрастает, а следовательно, возрастает и сопротивление деформации (упрочнение), прочность металла увеличивается.  [c.10]

Пластическая деформация поверхностного слоя сопровождается увеличением числа дефектов и искажением кристаллической решетки, изменением субструктуры и микроструктуры металла поверхностного слоя. В металле поверхностного слоя резко возрастает количество дислокаций, вакансий и других несовершенств кристаллической решетки, повышая его напряженность. Взаимодействие полей напряжений дислокаций между собой и с другими дефектами решетки затрудняет движение дислокаций, сопротивление пластической деформации возрастает, металл упрочняется (наклеп, деформационное или механическое упрочнение). Число дефектов в кристаллической решетке поверхностного слоя зависит от степени пластической деформации. Степень деформации, а следовательно, и число дефектов в решетке по глубине поверхностного слоя переменные, они уменьшаются с его глубиной.  [c.50]

Пластическая деформация увеличивает количество несовершенств в металле поверхностного слоя. Макронеоднородность деформации в металле создает макронеоднородность в распределении дефектов в кристаллической решетке. Следует полагать, что и возникновение макронапряжений в процессе механической обработки связано с дефектами атомной решетки и прежде всего с дислокациями.  [c.128]

Несовершенства (дефекты) строения реальных кристаллов металла. Описанная в предыдущем разделе кристаллическая решетка является идеальной. На основе физики твердого тела теоретически найдены механические характеристики, которые должны быть у кристаллов строго идеальной структуры. Сопоставление этих характеристик с обнаруживаемыми в опыте показывает значительное (в десятки и даже в сотни раз) превышение теоретическими значениями опытных. Последнее расхождение объясняется тем, что в реальных кристаллах всегда имеются отклонения от идеального характера атомной решетки, называемые несовершенствами или дефектами строения кристаллов ). Известны различные типы дефектов классификация их дана в табл. 4.3.  [c.233]

Было установлено, что структурные несовершенства, вызванные облучением, оказывают сильное влияние на скорость окисления, причем наиболее интенсивно реакция протекает вблизи пор и по границам зерен. Образование межузельных атомов в кристаллической решетке, как полагают в работах [127, 216], способствует реакции окисления, однако единая то ка зрения на это отсутствует. Противоречивость литературных данных не позволяет представить весь процесс взаимодействия графита с газовым потоком в целом и тем более судить о реакции окисления графита в нейтронном поле. На каталитическое действие структурных дефектов, вызванных облучением нейтронами и способствующих окислению, указано в работе [200]. В предварительно облученном реакторном графите скорость окисления возрастает в шесть раз по сравнению с необлученным материалом.  [c.208]

Одним из важнейших критериев пригодности материала для применения его в элементах конструкции является способность сохранять в рабочих условиях необходимый уровень механических свойств. Поэтому явлениям этого класса в табл. 2 уделено первое место. Механические свойства сильно подвержены воздействию облучения, так как механизмы движения дислокаций весьма чувствительны к дефектам кристаллической решетки, В облученном кристалле движущимся дислокациям необходимо преодолевать, кроме обычного рельефа Пайерлса и сил взаимодействия с исходными дислокациями и другими несовершенствами структуры, еще целый спектр барьеров радиационного происхождения изолированные точечные дефекты и их скопления, кластеры и дислокационные петли вакансионного и межузельного типов, пары, выделения, возникающие в результате ядерных превращений. Облучение, как правило, вызывает повышение пределов текучести и прочности, ускоряет ползучесть материалов, снижает ресурс пластичности, повышает критическую температуру перехода хрупко-вязкого разрушения.  [c.11]

Известно, что пластическая деформация кристаллических тел является следствием движения дислокаций в определенных плоскостях. Кривая упрочнения в какой-то мере отражает интегральный характер зарождения и движения дислокаций, их взаимодействие с решеткой, между собой и другими структурными несовершенствами кристаллов. Одной из важных характеристик кривой упрочнения кристаллов является напряжение начала пластической деформации. Фактически оно соответствует стартовому напряжению дислокаций (Тз), зарождение и смещение которых представляет собой элементарный акт пластической деформации. Наиболее достоверными значениями можно считать данные непосредственных наблюдений начала движения дислокаций при нагружении и измерений критической амплитуды колебаний по методу определения внутреннего трения. В некоторых случаях эти величины совпадают со значением критических скалывающих напряжений (КСН), вычисленных по кривым растяжения как напряжение начала отклонения зависимости сг (б) от линейного закона в упругой области деформации. Самыми развитыми плоскостями и направлениями скольжения являются плотноупакованные, поэтому изменения сопротивления деформированию у облученных кристаллов прежде всего определяются количеством дефектов и полем напряжений в этих плоскостях.  [c.55]


Границы зерен металла служат местами скопления дефектов строения кристаллической решетки. При переходе от одного зерна к другому меняется ориентировка кристаллической решетки. У границ зерен расположен слой атомов, принадлежащих частично кристаллической решетке одного зерна, частично решетке другого. При этом, чем больше различие в ориентировке соседних зерен, тем больше несовершенств на границе между ними. В чистых металлах толщина пограничного слоя составляет величину порядка двух параметров кристаллической решетки. Атомы примесей в металлах стремятся расположиться преимущественно по границам зерен, где кристаллическая решетка уже имеет несовершенства строения и где появление инородного атома вызывает меньшие дополнительные искажения.  [c.15]

Проведенные опыты по определению вязкого скольжения зерен относительно друг друга дали возможность выдвинуть ряду авторов обоб-ш,енную модель [2]. По этой модели грань спайности представляется как сочетание многочисленных несовершенств решетки со строгой структурой. В этом случае несовершенство представляется как некоторое подобие дырки , т. е. незаполненного узла в кристаллической решетке. При вязком скольжении зерен должно произойти смещение одного дефекта структуры относительно другого и перераспределение атомов, для чего, очевидно, необходима энергия активации. Коэффициент вязкости в этом случае будет определяться следующим выражением  [c.211]

Дефекты кристаллической структуры веществ возникают уже в процессе их кристаллизации. Взаимодействие дефектов между собой приводит к образованию новых несовершенств. Нарушение правильности кристаллической решетки изменяет свойства материала.  [c.35]

Первый путь заключается в устранении несовершенства кристаллической решетки и приближении ее строения к идеальному, второй — противоположный первому — состоит в увеличении количества структурных дефектов, пересечении дис-  [c.9]

Атомарный водород в силу высокой подвижности (коэффициент диффузии >н = 10 м с) диффундирует в объеме стали, накапливаясь в местах сосредоточения внутренних напряжений и несовершенств кристаллической решетки. Дефекты металла в виде пор являются своеобразными ловушками для атомарного водорода в них происходит его молизация, идущая с образованием плоскостного давления до 400 МПа [2.7].  [c.141]

Таким образом, повышение прочности металлов и сплавов может быть достигнуто двумя путями 1) получением металлов с близким к идеальному строением кристаллической решетки, т. е. металлов, в которых отсутствуют дефекты кристаллического строения или же их число крайне мало 2) либо, наоборот, увеличением числа структурных несовершенств, препятствующих движению дислокаций.  [c.13]

Линейные дефекты по размерам в двух направлениях сравнимы с межатомными расстояниями, а в третьем простираются на многие тысячи периодов кристаллической решетки. Важнейшими видами линейных несовершенств являются краевые (линейные) и винтовые дислокации.  [c.21]

Практически в любом материале, как бы он ни был пластичен при статических испытаниях, может произойти хрупкое разрушение, если в нем при нагружении одновременно образуется множество активных дефектов — несовершенств кристаллической решетки, дислокаций. Такое условие выполняется, например, для взрывной нагрузки. Разрушение в этих случаях состоит из многих, достаточно далеко отстоящих одна от другой трещин, соединяющихся между собой в более или менее правильной последовательности. Отрицательное влияние перечисленных и подобных им факторов усиливается при наблагоприят-ном структурном состоянии материала (крупный размер зерна, наличие наклепа, распад твердого раствора и т. д.). Влиянию режимов термической обработки и дефектов материала на склонность к хрупкому разрушению посвящены работы [55, 103, 106, 116 и др.]  [c.39]

Применяемые на практике металлы и сплавы представляют собой твердые растворы с упорядоченным и неупорядоченным аморфным распределениями атомов. Твердые растворы могут содержать несовершенства четырех основных типов точечные (нульмерные), линейные (одномерные), поверхностные (двухмерные) и объемные (трехмерные). К первым относятся вакансии (свободные узлы кристаллической решетки) и межузельные (смещенные) атомы ко вторым — цепочки точечных дефектов, различные типы дислокаций к третьим — дефекты упаковки атомов, границы зерен, блоков, двойников и т. д. к четвертым дефектам относятся поры, включения, выделения, технологические трещины и тому подобные образования, размеры которых намного превосходят межатомные расстояния.  [c.321]

Изменение энергии и физико-механических свойств в процессе пластической деформации. Пластическая деформация — это процесс возникновения и необратимого движения дислокаций, вакансий и других несовершенств кристаллической решетки и их взаимодействия между собой и с другими дефектами. Вследствие этого внутренняя энергия пластически деформированных металлов и сплавов возрастает. Величина дополнительной энергии (скрытая энергия наклепа) равна той доле механической энергии деформации, которая накапливается в материале и остается в нем по окончании действия внешнних сил.  [c.25]

Соотношение структурных элементов коксов (сферолнтов, игольчатых частиц и т. д.) заметно влияет на размерную стабильность при высокотемпературном облучении большими флюенсами. Это находит свое объяснение в различии размеров кристаллитов. Радиационные размерные изменения графитов с малыми размерами кристаллитов происходят с большими скоростями, так как наиболее вероятным оказывается захват возникающих дефектов на несовершенствах кристаллической решетки (так называемый гетерогенный процесс образования скоплений).  [c.165]

Точечные дефекты, или несовершенства, размер которых мал во всех трех измерениях. К ним относятся вакансии (фиг. 8, а) — свободные узлы в атомно-кристаллической решетке — и промежуточные атом ы, смещенные в межуз-лия, или смещения (фиг. 8, а), а также атомы примесей, которые могут или замещать атомы металла в решетке, или быть внедренными в ее межузлия. Вакансии, промежуточные атомы и атомы примесей искажают атомно-кристаллическую решетку основного металла. При повышении температуры и увеличении амплитуды колебаний атомов в кристаллической решетке имеется вероятность выхода некоторых атомов из узлов решетки с образованием  [c.20]

В неравновесной структуре метастабильный аустенит обнаружить легче, чем в равновесной. При наличии дефектов кристаллического строения термодинамический потенциал системы повьш1ается (см. рис. 3, б) . Это приводит к тому, что при реализации а -> 7-превращения в объектах, содержащих несовершенства, устанавливается квазиравновесное состояние, описывающееся конодой а [dl. Это соответствует гораздо меньшей концентрации углерода в аустените (точка d ) по сравнению с равновесной (точка d). Чем более неравновесно состояние исходной ферритокарбидной матрицы, тем меньшей должна быть концентрация углерода в аустените, находящемся в состоянии квазиравновесия с исходной искаженной а-фазой. Это эквивалентно смещению температуры до Т - Следовательно, чем больше степень неравновесности исходной структуры, тем выше эквивалентная температура превращения и тем большим должно быть количество аустенита, образующегося при данной температуре.  [c.15]


Можно высказать следующие предположения относительно отмеченного эффекта. Известно, что в кристалле с равномерно распределенным растворенным элементом при наличии дислокаций возникает поток атомов этого элемента по направлению к дислокационным линиям, вследствие чего вокруг дислокаций создаются коттрелловские облака . Поскольку аустенит может наследовать дефекты деформированной а-фазы, можно ожидать образования на них сегрегаций углерода. Б межкритичес-ком интервале наличие таких сегрегаций должно затруднять процесс выделения феррита. Это связано с тем, что в присутствии дислокаций образование зародышей новой фазы преимущественно происходит именно на них [ 54]. Однако выделение малоуглеродистой а-фазы на дислокациях, обогащенных углеродом, естественно, затрудняется. Длительное сохранение неравновесного соотношения феррита и аустенита можно объяснить смещением кривых фазового равновесия при наличии несовершенств кристаллического строения за счет повышения термодинамического потенциала фаз и реализации в связи с этим квазиравновесных состояний.  [c.58]

Установлено, что на практике для одновременного сдвига одной части кристаллита относительно другой требуются напряжения, в сотни раз меньшие теоретически рассчитанных. Это связано с тем, что в реальных металлах имеются дефекты кристаллической струтоуры. Поэтому скольжение в зернах происходит не одновременно по всей плоскости скольжения, а последовательно, путем перемещения этих дефектов, для чего требуются значительно меньшие сдвиговые напряжения. Несовершенства в строении реальных кристаллитов, например отсутствие атомов или их избыток в решетке, называют дислокациями (см. раздел I). При пластической деформации в металле возникают дополнительные дислокации, происходит их пересечение и накопление на границах зерен, в результате чего образуются осколки кристаллитов.  [c.283]

Начальная стадия возникновения прослоикя химического соединения на границе Т—Ж изучена слабо. Практически в результате шероховатости поверхности паяемого металла, несовершенств кристаллической решетки, зерен и други.ч дефектов химическое соеди-H iHie образуется сначала в отдельных центрах контакта, вдоль межфазной границы с последующим образованием сплошной прослойки, которая затем растет по толщине. Параболический закон роста прослоек химических соединений прн фронтальном их продвижении во многих случаях является первым приближением, так как часто по фроту роста прослойки наблюдаются отде-1ьные ее выступы, растущие со скоростью выше средней.  [c.69]


Смотреть страницы где упоминается термин Кристаллические дефекты (несовершенства) : [c.245]    [c.21]    [c.25]    [c.190]    [c.4]    [c.79]   
Металловедение и термическая обработка Издание 6 (1965) -- [ c.20 ]



ПОИСК



Дефекты кристаллической

Кристаллические



© 2025 Mash-xxl.info Реклама на сайте