Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловая нагрузка, виды

Более полное представление об изменении основных характеристик исследуемой системы можно получить из представленных на рис. 6.15 данных для этого же образца. Здесь изображенный на рис. 6.14 переходный процесс выглядит в виде скачка всех рассмотренных параметров при постоянной плотности теплового потока qjq =1,13 (нормирующая величина q" рассчитывается из соотношения q" = G(i - to). Слева от значения qlq = 1,13 расположена область режимов с кипящей пленкой, справа — с полностью сухой внешней поверхностью. Здесь отчетливо видно, что в режимах с кипящей пленкой при значительном увеличении тепловой нагрузки все остальные параметры системы остаются практически постоянными, затем они испытывают скачкообразное изменение в режиме высыхания внешней поверхности и далее быстро возрастают при незначительном увеличении тепловой нагрузки в режимах с полностью сухой поверхностью. Вертикальными стрелками указано направление изменения параметров в переходном процессе, например точки а, с соответствуют температуре внешней поверхности и перепаду давлений на стенке в начале переходного процесса г = О (см. рис. 6.14, точки в, с),  [c.148]


Диаграмма ip позволяет быстро находить параметры пара и дает возможность определять в виде отрезков прямых характеристики рабочего процесса холодильных установок холодопроизводительность, тепловую нагрузку конденсатора и теоретическую затрату работы в компрессоре.  [c.268]

Для аппаратов наиболее типичны механические и тепловые нагрузки, а для элементов электроприборов - электрические и тепловые. Укрупненно виды нагрузок подразделяют на механические, электрические, акустические, тепловые, гидравлические (пневматические), радиационные, электромагнитные, магнитные, биологические, климатические и химические. Нефтехимические аппараты одновременно подвергаются влиянию, как правило, нескольких видов нагрузок. Действие различных видов нагрузок взаимозависимо. Так, элект]зи -ческие нагрузки деталей электроприборов, как правило, являются следствием появления тепловых нагрузок. В свою очередь, сравнительно большая тепловая инерция материалов приводит к неравномерному распределению температуры по отдельным конструктивным элементам аппаратов, что является причиной неравномерной деформации и, как следствие этого, появления механических нагрузок.  [c.72]

Температурные поля для теплоотдачи в плотном и разреженном (с температурным скачком) газах при одинаковом тепловом потоке и одинаковой температуре газа имеют вид, показанный на рис. 11.7. Тепловая нагрузка для плотного газа равна  [c.401]

Непрерывное парообразование на поверхности теплообмена сопровождается поступлением жидкости к этой поверхности. Всплывающие пузырьки пара затрудняют подход жидкости к центрам парообразования. При некоторой величине тепловой нагрузки благодаря большому числу действующих центров парообразования и оттесняющему воздействию пузырьков на жидкость паровые пузырьки объединяются в пленку, которая покрывает сначала отдельные участки поверхности, а затем полностью отделяет жидкость от поверхности нагрева. Пленка непрерывно разрушается и уходит от поверхности нагрева в виде больших пузырей. Вместо разрушившейся паровой пленки возникает новая. Такое кипение называется пленочным. В этих условиях теплота передается от поверхности нагрева к жидкости путем теплопроводности, конвективного переноса и излучения, а испарение происходит о поверхности пленки. Так как теплопроводность пара значительно меньше теплопроводности жидкости, то появление паровой пленки приводит к резкому уменьшению коэффициента теплоотдачи. Тепловая нагрузка при этом также уменьшается (зона С). Когда пленка покрывает всю поверхность нагрева, условия теплообмена стабилизируются и при даль-  [c.407]


Погрешность в определении Q, а также тепловая нагрузка на образец и время его пребывания под нагрузкой определяются видом и параметрами переходного режима. Многие из возможных видов возмущения с помощью различных комбинаций тепловых блоков (см. п. 4.3) уже реализованы [20, 31, 39, 611, для оценки практической целесообразности каждого из них и минимизации погрешности необходимо классифицировать переходные процессы (рис. 5.19). Каждая из комбинаций тепловых блоков может давать возмущение изменением температуры или мощности  [c.126]

Наконец, при некотором температурном напоре вся поверхность нагрева обволакивается сплошной пленкой пара, оттесняющей жидкость от поверхности. Так наступает третий, пленочный режим кипения (рис. 4-2, в). Перенос теплоты в режиме пленочного кипения от поверхности нагрева к жидкости осуществляется путем конвективного теплообмена и излучения через паровую пленку. По мере увеличения температурного напора все большая часть теплоты передается за счет излучения. Интенсивность теплообмена в режиме пленочного кипения достаточно низкая. Паровая пленка испытывает пульсации пар, периодически накапливающийся в ней, отрывается в виде больших пузырей. В момент наступления пленочного кипения тепловая нагрузка, отводимая от поверхности, и соответственно количество образующегося пара имеют минимальные значения. Минимальное значение тепловой нагрузки при пленочном кипении называется второй критической плотностью теплового потока а- При атмосферном давлении для воды, кипящей на технических металлических поверхностях, момент начала пленочного кипения характеризуется температурным напором At = = —ts 150°С, т. е. температура поверхности составляет примерно 250°С.  [c.112]

Удаление необратимо удержанной части ингибитора можно осуществить только при температуре выше 200° С в период, совпадающий с началом термической деструкции целлюлозы. На рис. 35 изображены кривые дифференциального термического анализа в виде зависимости АТ (ДТА) от тепловой нагрузки чистого образца бумаги-основы (кривая 1) и образца бумаги-основы, обработанной 20%-ным  [c.165]

Электро- и теплоэнергетика. В модели все рассматриваемые электростанции делятся на четыре типа КЭС, ТЭЦ, ГЭС и АЭС. Теплоэнергетика представлена дополнительно блоком котельных. ТЭС (КЭС и ТЭЦ) подразделяются в зависимости от вида основного топлива на угольные, мазутные, газомазутные, и отдельно выделяются электростанции, работающие на местном топливе (торфе, сланцах) и на вторичных энергоресурсах (доменном и коксовом газе). Зависимость электрической нагрузки ТЭЦ от тепловой нагрузки учитывается заданием двух крайних режимов теплофикационного и конденсационного.  [c.432]

На рис. 9.6 показаны два случая сравнительно равномерного образования окалины при наличии наносного слоя из оксидов железа а) и в его отсутствие (б). Верхний (наносный) слой окалины может быть легко удален с поверхности металла острым предметом или смятием трубы, нижний практически не поддается удалению, так как он прочно связан с металлом. Такой вид коррозии часто наблюдается в нижней радиационной части (НРЧ) прямоточных котлов при больших тепловых нагрузках. Его развитию способствует присутствие оксидов железа, меди и других загрязнений, приносимых водой из питательного тракта котла. Трещины образуются с огневой стороны трубы, где происходит наиболее сильное наводороживание стали.  [c.178]

Пароводяная коррозия в виде бороздок характерна для экранных труб барабанных котлов при повышенных тепловых нагрузках (рис. 9.8). Они обнаруживаются вблизи сварочного шва и на целом металле, где наблюдается так называемое явление хайд аута — выпадение легкорастворимых солей. Подобные цепочки повреждений, как правило, покрыты рыхлым слоем оксида металла. При избыточной щелочности котловой воды поврежденные места бывают полностью оголены, цвет металла серебристый. Этот вид коррозии возникает преимущественно в зоне сварного шва, особенно с большими наплывами сварочного металла или другими дефектами, способствующими выпадению отложений и концентрированию под ними котловой воды.  [c.179]


Следует отметить, что в настоящее время сложившаяся практика ценообразования на топливо и различные виды энергии в различных районах страны не всегда правильно позволяет промышленным предприятиям решать вопросы рационализации их топливно-энергетического хозяйства на основе рационального и полного использования ВЭР. Примером тому могут служить нефтеперерабатывающие заводы, для которых сложившееся соотношение цен на производимые темные нефтепродукты (мазут) и получаемую от ТЭЦ тепловую энергию таково, что для заводов часто выгодней использовать физическое тепло уходящих газов промышленных печей не на нагрев дутьевого воздуха путем установки соответствующих рекуператоров, а на производство пара путем установки котлов-утилизаторов для покрытия тепловой нагрузки предприятия. В этом случае при оценке энергоносителей на основе действующей системы цен получается более выгодным использование ВЭР на выработку пара, хотя общепризнанным является тот факт, что возврат БЭР в агрегат-источник является наиболее эффективным путем экономии топливно-энергетических ресурсов. Приведенный пример является только одним из примеров, иллюстрирующих то положение, что при использовании цен в расчетах эффективности утилизации ВЭР решения, полученные на уровне промышленных предприятий, не всегда могут совпадать с экономичными решениями с точки зрения всего народного хозяйства.  [c.278]

Четырехокись азота обладает достаточной для практического использования в АЭС радиационной и термической стойкостью. Коррозионные испытания конструкционных материалов, в том числе под напряжением и тепловой нагрузкой, не выявили специфичных видов кор-  [c.4]

Общая тепловая нагрузка на стенку бланкета термоядерного реактора определяется суммой произведений Еа и равна примерно 1000 Вт/см , причем стенка обращена с одной стороны к водородному вакууму, а с другой омывается жидкометаллическим теплоносителем (литий, натрий), или расплавом солей, или газом (например, гелием). Таким образом, стенка бланкета термоядерного реактора снаружи должна также противостоять механической нагрузке в виде давления теплоносителя, причем это давление определяется конструктивной схемой бланкета и может составить несколько атмосфер.  [c.14]

Последний член в уравнении теплового баланса (5-1) может быть записан в представленном виде лишь при допущении квазистационарности процесса разрушения. При переменной тепловой нагрузке это до- 125  [c.125]

Связь между удельной тепловой нагрузкой и температурой стенки трубы запишем в следующем виде  [c.60]

Найдем вид кривой, который должна иметь эпюра температур стенки в случае, если коэффициент теплоотдачи предполагается постоянным, удельная тепловая нагрузка пропорциональна температуре стенки трубы, а аксиальные растечки тепла в потоке и в жидкости отсутствуют.  [c.61]

Целью проделанных расчетов была попытка найти вид кривой изменения температуры жидкости по длине канала, чтобы по измеренным значениям температуры стенки и температуры жидкости на выходе из трубы и по подсчитанным величинам удельных тепловых нагрузок определить коэффициент теплоотдачи прямым путем, т. е. делением удельной тепловой нагрузки на величину температурного напора. Однако, как показывают полученные зависимости, воспользоваться ими для этой цели практически не удается, так как распределение температур и тепловых потоков определяется экспонентой, в показателе которой стоит искомая величина — коэффициент теплоотдачи. Можно показать, что и при учете аксиальных растечек получается такой же порочный круг.  [c.63]

В условиях кипения, так и в квазистатических условиях (в моменты после внезапного снятия тепловой нагрузки). Эти данные, обработанные затем по описанной выше методике, также нанесены на рис. 2. Можно видеть, что эти результаты удовлетворительно согласуются с данными киносъемки.  [c.159]

Достаточно очевидно, что при течении двухфазных неравновесных потоков паросодержание есть величина интегральная, зависящая от предыстории потока. Конечно, при постоянной тепловой нагрузке в той области, где мало сказываются входные условия, в силу связей, существующих в потоке, истинное объемное паросодержание определяется локальным расходным теплосодержанием и другими режимными параметрами. Поэтому возможно обобщение данных в виде зависимостей типа хг . . . ). Однако при других законах изменения тепловой нагрузки или  [c.85]

Потребность в газовом топливе для отопительно-производственной котельной определяют по тепловым нагрузкам отдельных потребителей, использующих пар или горячую воду. На основании собранных данных составляют сводную таблицу теплопотребления, где всех потребителей группируют по признаку одного вида теплоносителя, и для каждого из них указывают максимальный часовой и фактический годовой расход тепла в ккал или кет -ч. Отопительную и вентиляционную нагрузки рассчитывают по продолжительности отопительного периода. Наибольшую суточную выработку пара для этих целей указывают по максимальному зимнему режиму.  [c.19]

Вероятность разрушений чугунных поверхностей нагрева серьезно возрастает при переводе котлов, предназначенных для работы на твердом топливе, на газ или жидкое топливо. В таких случаях увеличиваются тепловые нагрузки на поверхностях нагрева, создаются условия для образования накипи, перегрева металла и неравномерного температурного расширения. Вообще работа котлов на непроектных видах и марках топлива может быть причиной появления повреждений.  [c.202]


Основным видом тепловой нагрузки в сетях является отопление. В гл. 1 ( 1-2) рассматривался температурный режим отапливаемых помещений при прекращении отпуска тепла. Темп снижения /в в зависимости от величины теплоаккумулирующей способности отапливаемого здания (и помещения) и особенно от силы ветра может доходить до 1,5—2 град ч и более. Таким образом, прекращение подачи тепла в зимний период вызывает весьма быстрое снижение /в и совершенно несоразмерно с возможной длительностью ликвидации повреждения в сетях.  [c.116]

Прежде всего нужно иметь в виду, что ВЭР — это тепловые отходы, а технический уровень технологии определяется в настоящее время степенью ее безотходности, в том числе и энергетической безотходностью. Во-вторых, отопление — сезонная нагрузка, поэтому использование ВЭР на отопление не может быть круглогодичным. И, наконец, нередко отопление за счет ВЭР приводит к уменьшению тепловой нагрузки ТЭЦ, т. е. ухудшает эффективность использования топлива на ТЭЦ.  [c.219]

Выявление условий возникновения кризиса кипения является практически наиболее важной задачей, стоящей перед исследователями теплообмена при кипении. Действительно, значение во многих случаях определяет границу безаварийной эксплуатации оборудования по тепловой нагрузке. Несмотря на огромное количество экспериментальных и теоретических работ, посвященных кризису кипения в каналах, сегодня не только отсутствует законченная теория процесса, но (по некоторым аспектам) даже единство в качественных представлениях о механизме процесса. Пожалуй, сегодня можно лишь констатировать намечающееся согласие различных исследователей в том, что невозможно создать некую универсальную модель кризиса кипения в каналах, способную описывать развитие процесса при любом сочетании параметров [12, 51, 78]. При этом в упоминаемых работах речь шла о кризисах кипения недогретой жидкости, т.е. о режимах, при которых относительная энтальпия потока в месте кризиса < 0. Достаточно взглянуть на общий вид зависимости широком диапазоне j [11], чтобы понять очевидную невозможность построения общей теории кризиса кипения в каналах. Представленная на рис. 8.7 зависимость содержит, как минимум, три различные по доминирующему процессу области. Участок ylS соответствует кризису пузырькового кипения (кризис первого рода), имеющему общие черты с кризисом кипения в условиях свободного движения (большой объем). Участок ВС согласно [11] отвечает постоянно-  [c.361]

Водяная обмывка более эффективна по сравнению с паровой и пневматической обдувками, ее использование не приводит к сильному золовому износу очищаемых труб, так как скорости истечения воды из сопл невысоки. В то же время следует иметь в виду, что при водяной обмывке необходима система защиты, прерывающая подачу воды в аппарат, так как при длительном охлаждении отдельных труб экранов водой вследствие снижения их тепловос-приятия может произойти нарушение циркуляции. При водяной обмывке повышается вероятность разрыва экранных труб, испытывающих циклические тепловые нагрузки.  [c.142]

Теплоотвод к охлаждаемой воде. Возможны три режима теплообмена на охлаждаемой водой поверхности конвективный теплообмен, пузырьковое или пленочное кипение. В первом случае перенос тепла между охлаждаемой поверхностью и водой осуществляется одновременно конвекцией и теплопроводностью. С увеличением тепловой нагрузки конвективный теплообмен переходит в пузырьковое кипение. Вода у охлаждаемой поверхности нагревается до температуры кипения, однако пар сразу же конденсируется в ядре потока, температура которого ниже температуры насыщения. При дальнейщем увеличении тепловой нагрузки пузырьки пара скапливаются на охлаждаемой поверхности в виде пузырькового слоя. Когда пузырьковый слой становится чрезмерно толстым, он мешает проникновению воды к горячей поверхности и возникает режим пленочного кипения. Охлаждаемая поверхность отделяется от жидкости сплошной пленкой пара, что вызывает быстрый рост температуры поверхности. Тепловые нагрузки, соответствующие наступлению пленочного режима охлаждения, называют критическими.  [c.41]

Учитывая возможность реализации схем теплоснабжения путем различного сочетания источников теплоты и их мощностей, а также неоднозначности исходных данных, задачу рассматривали в много-вариантной постановке. В результате проведенных исследований установлено, что в условиях ЧССР более эффективным является использование ядерного горючего для комбинированного производства тепловой и электрической энергии. По сравнению с A T АТЭЦ могут конкурировать с ТЭЦ на органическом топливе при введении ограничения на использование каменного угля для целей теплоснабжения и при задержке освоения котлов с кипящим слоем. В случае применения АТЭЦ схема теплоснабжения рассматриваемого района приобретает вид, представленный на рис. 6.12. Она включает крупную АТЭЦ, а также ряд существующих ТЭЦ, покрывающих локальные тепловые нагрузки или используемых в качестве пиковых источников теплоты.  [c.128]

Наряду с крупными, практически сформировавшимися промышленными городами в Сибири раз иваются и относительно небольшие города н поселки, особенно в районах новостроек, таких, например, как полоса Байкало-Амурской магистрали (БАМ). Доля тепло-потребления городов с тепловой нагрузкой 1000 Гкал/ч (1200 МВт) составит на ближайшую перспективу 70—75 % от суммарного тепло-потребления всеми городами и ПГТ Сибири. В настоящее время yjj e имеется ряд относительно небольших городов с выюкой концентрацией производственных мощностей. По удельным показателям расхода топлива, потребления энергии, выброса твердых и газообразных продуктов его сгорания эти промышленные центры стоят па уровне больших городов. В Сибири имеются города н населенные пункты, где отсутствуют крупные промышленные объекты и практически все выбросы в атмосферу твердых частиц в виде золы приходятся на источники теплоснабжения, которые дают одновременно подавляющую долю вредных газообразных выбросов.  [c.256]

Другой вид подшламовой коррозии — ракушечная. Обычно над поверхностью металла выступает верхняя часть образовавшейся ракушки . Нижняя ее часть располагается в корродиру-юш,ем металле. Размеры отдельных ракушек и находящихся под ними язвин бывают различными, встречаются как мелкие, так и крупные наросты с четкими границами толщиной до 20 мм и площадью до 25 см . Ракушки прочно сцеплены с основным металлом. В их составе преобладают оксиды железа и соединения меди (преимущественно металлическая медь). Под крупными ракушками структура металла, как правило, бывает измененной, наблюдается обезуглероживание. Ракушечная коррозия развивается обычно на огневой стороне экранных труб, и не только в теплонапряженных участках, но и в зонах с относительно небольшими тепловыми нагрузками.  [c.183]

Современная практика показывает, что значительная часть мощностей холодильных установок используется для получения сезонного холода (в летний период) в виде охлажденной воды. В этом же периоде года резко сокращаются тепловые нагрузки отборов теплофикационных турбин ТЭЦ и выработка электроэнергии на ТЭЦ осуществляется в неэкономичном конденсационном режиме. Поэтому применение теплоиспользующих бромистолитиевых абсорбционных холодильных установок вместо компрессионных и теплоснабжение их в летний период из отборов турбин ТЭЦ, увеличивая загрузку ТЭЦ по тепловому режиму, приводит не только к повышению экономичности выработки холода, но и к повышению экономичности работы ТЭЦ, что, в свою очередь, обеспечивает экономию первичных топливно-энергетических ресурсов.  [c.208]

I Большое влияние на технологию оказывают также качественные изменения конструкций машин. Особое развитие в машинах получили автоматизированные приводы, а также системы контроля и регулирования. Возросли рабочие параметры машин, а вместе с ними — силовые, скоростные и тепловые нагрузки на детали. При изготовлении современных машин все шире применяют новые, обычно труднообрабатываемые материалы.j усложнением конструкций и увеличением нагрузок на детали проблема качества их изготовления и высокой надежности выпускаемых машин стала одной из основных в технологии машиностроения. Все это потребовало более глубокого изучения и совершенствования сущ,ествующих, а также разработки новых, высокоэффективных методов и процессов обработки. Появились новые виды инструментальных материалов, освоен выпуск и находят все большее применение синтетические сверхтвердые материалы (алмазы и кубический нитрид бора), большое развитие получили методы отделочно-упрочняюш,ей обработки, расширяется применение электрофизических и электрохимических способов обработки.  [c.3]


Эксперименты проводились со сравнительно чистым теплоносителем ( hno, =0,4—0,5%) при тепловых нагрузках 0,6-10 1,15-105 и 1,7-10 вт/м , давлениях 14,7 и 49 бар и расходах теплоносителя 750 кг/м -сек. Основные результаты опытов показаны на рис. 4.1 в виде данных по содержанию примесей HNO3—НгО (в пересчете на HNO3) в пристенном слое жидкости в зависимости от расчетного весового паросодержания потока X.  [c.97]

Многолетние коррозионные испытания конструкционных материалов, в том числе под напряжением и тепловой нагрузкой, не выявили специфических видов коррозии. В среде N2O4 при температурах 290 — 970 К и давлениях 1 —150 бар получена высокая коррозионная  [c.47]

Скорость циркуляции воды измеряется с помощью острой диафрагмы 13 и дифманометра 14, которыми оборудован контур. Общая высота контура 4 м, длина — 12 м, диаметр труб — 130 мм. Подъемная часть контура имеет зигзагообразную форму, необходимую для размещения нужного количества электрообмоток. Каждый из испытуемых образцов вставляется в бобышку, выточенную из болванки в виде толстостенного цилиндра длиной ПО мм и диаметром ПО X 8 лш. Электрообмотка изолирована от металла слоем слюды. Зазор между образцом и бобышкой для улучшения теплопередачи заливается оловом, а снизу уплотняется асбестом. Методом бобышки, разработанным ЭНИНом, удается повысить тепловую нагрузку образца примерно в восемь раз, доведя ее до 300-10 ккал1м час.  [c.69]

Для питания котлов употребляется конденсат турбин с добавлением дистиллята испарителей или химически обессоленной воды, а также химически умягченной воды. Котлы, в отличие от другого вида теплосилового оборудования, работают в условиях интенсивного теплового потока при одновременном высоком температурном уровне греющего агента и рабочего тела. Тепловая нагрузка наиболее теплонапряженных участков экранных труб достигает 300000 кал1м ас. Кроме того, в котле концентрируются примеси, приносимые с питательной водой, хотя бы даже они находились в ней в ионном состоянии. Эти же примеси могут осаждаться и на внутренней поверхности экранных и кипятильных труб. А так как из современных котлов испаряется огромная масса воды, то даже небольшое количество таких примесей (кислорода, окислов железа, меди и других веществ) в питательной воде может привести к вредным последствиям — возникновению коррозии, образованию накипи и загрязнению пара. Этому же способствуют температура и давление. 4тобы избежать преждевременного появления коррозии и причин, приводящих к авариям котлов, котловая питательная вода строго нормируется по отдельным показателям, а именно по содержанию  [c.233]

Установленное в деаэраторах повышенного давления приспособление для дросселирования пара, подаваемого в деаэрационную головку, в виде ряда отверстий в паровом коллекторе ограничивает расход пара при резком увеличении тепловой нагрузки деаэратора. Вследствие этого происходит вскипание воды в баке-аккумуляторе и довольно часто возникает переброс пара в питательный насос. Чтобы этого избежать, необходимо увеличить суммарную площадь отверстий путем увеличения их числа и диаметра и сделать ее примерно равной площади сечения подводящей трубы. Это приведет к выключению барботажпого устройства, так как давление пара пе ред соплами станет равным давлению пара в деаэра> торе.  [c.77]

Изображенные на рис. 7-3 случаи пароводяной коррозии в виде бороздок характерны для экранных труб барабанных котлов при повышенных тепловых нагрузках. Они обнаруживаются вблизи сварочного шва (а) и на целом металле (б), где наблюдается явление хайдаута (см. 7-2). Подобные цепочки повреждений, как правило, бывают покрыты рыхлым слоем окислов металла.  [c.251]

Было бы принципиальной ошибкой считать, что путем улучшения водно-химического режима котлов при высоком уровне теплового напряжения можно ликвидировать пароводяную коррозию. При наличии нарушений топочного режима, шлакования, вялой циркуляции воды в барабанных котлах, пульсирующего потока в прямоточных котлах и особенно при высоких тепловых нагрузках средствами химической обработки воды практически невозможно предупредить этот вид разрушения металла. Опасный с этой точки зрения низший предел тепловой нагрузки в настоящее время определить затруднительно. По мнению Хёмига, он равен примерно 840 МДж/(м2-ч) [ 200- к кал/(м2 ч)].  [c.256]

Для топочных камер высоконапорных парогенераторов, работающих при высоких тепловых нагрузках топочного объема и под давлением, Я. П. Сторожуком была установлена зависимость вида  [c.154]

При расширении имеющихся, а иногда и при создании нового источника теплоснабжения применяют установку в котельной паровых и водогрейных котлов. Это объясняется тем, что для нужд отопления, вентиляции и горячего водоснабжения наиболее экономично и целесообразно использовать в качестве теплоносителя перегретую воду, а для технологических целей — насыщенный водяной пар. Практика проектирования таких источников теплоснабжения показала, что тепловая нагрузка котельной в виде горячей воды составляет обычно большую долю, чем паровая. Переход на водяные системы отопления производственных цехов, административных зданий и строительство жилых поселков и домов с централизованным теплоснабжением также приводят к расширению и реконструкции имеющихся производст-  [c.8]

Котельные низкого давления с комбинированными котлами, выполненными на базе серийных водогрейных котлов типа КВ-ГМ-180, должны являться одной из составных частей ТЭЦ, предназначенных для покрытия пиков по обоим видам тепловой нагрузки, набора нагрузок до ввода первых энергетических блоков и резервирования по-теплоте при аварийных ситуациях на ТЭЦ. Включение котельной низкого давления в состав ТЭЦ любого типа позволяет обеспечивать наиболее рациональный и экономичный выбор основного оборудования ТЭЦ высокого давления. Анализ, проведенный институтом ВНИПИэнергопром, показывает,, что практически для всех отраслей-промышленности происходит увеличение потребления теплоты на технологические нужды при понижении температуры наружного воздуха. В связи с этим для всех ТЭЦ является весьма актуальным создание комбинированных теплофикационных котлов теплопроизводи-тельностью от 50 до 180 Гкал/ч.  [c.162]

Ниже раеоматрввается особенность автоматического регулирования взаимоовязанных процессов выдачи котлом при работе в комбинированном режиме тепловой нагрузки в виде пара и воды, заключающаяся в том, что в отличие от чисто водогрейных или паровых котлов в комбинированных агрегатах указанное регулирование осуществляется одновременно по двум выходным параметрам давлению пара на выходе из котла и температуре прямой сетевой воды водогрейной части котла.  [c.199]

Необходимо иметь в виду, что при переводе на газовое топливо котельных, работавших ранее на угле, резко увеличивается тепловая нагрузка экранированных стен топки или секций котла. Поэтому выбор газогорелочных устройств должен осуществляться с учетом этой дополнительной нагрузки. Так, при переводе на газовое топливо чугунных секционных котлов применение инжекционных горелок среднего давления может привести к перегреву средних секций и выходу их из строя. Однако это не значит, что чугунные секционные котлы не могут работать на среднем давлении газа с инжекционными или форкамерными горелками. Необходимо ли(пь позаботиться о надлежащей водо-подготовке в котельной и регулярно очищать котлы от накипи. При обеспечении правильной эксплуатации такие котлы могут быть оборудованы газогорелочными устройствами, работающими на газе среднего давления.  [c.135]

Ввиду большой стоимости и металлоемкости трехтрубпые тепловые сети не нашли применения. Монопольное распространение в СССР нашли двухтрубные тепловые сети, от которых удовлетворяются все виды тепловой нагрузки (отопление, вентиляция, горячее водоснабжение на бытовые и производственные нужды) и все потребители в городах (жилые и общественные здания, коммунальные и промышленные предприятия). Вполне естественно, что удовлетворение весьма разнохарактерных потребностей и разных потребителей от общей сети приводит к усложнению схем присоединений и рел<имов работы.  [c.38]

За последнее время в накипях, образовавшихся в местах с высокими тепловыми нагрузками, находят значительное содержание цинка (в пересчете на ZnO до 40 %). Цинк выделяется в виде фосфата, а также в виде окиси или основного фосфата. Надо полагать, что ослабить процесс осаждения цинка можно было бы повышением щелочности котловой воды. Во всяком случае ясно, что фосфатный режим не является универсальным способом предотврашения наки-пеобразования. Более того, можно считать, что в отношении осаждения цинка присутствие фосфатов даже способствует его выделению.  [c.175]



Смотреть страницы где упоминается термин Тепловая нагрузка, виды : [c.468]    [c.16]    [c.44]    [c.109]   
Тепловые электрические станции Учебник для вузов (1987) -- [ c.11 ]



ПОИСК



Нагрузка тепловая

Нагрузки — Виды

Тепловые электростанции графики нагрузок, тепловая экономичность, принципиальные тепловые схемы и типы установок Классификация тепловых электростанций по видам нагрузок



© 2025 Mash-xxl.info Реклама на сайте