Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Простая линейная задача на собственные значения

Простая линейная задача иа собственные значения  [c.81]

Эта задача не совпадает с проблемой собственных значений в данном случае вопрос идет просто о решении системы линейных уравнений. Однако проблема собственных значений, представленная уравнением (103.8), тесно связана с решением системы уравнений (104.4), потому что амплитуды возрастают, когда возмущающая частота близка к собственной частоте или, выражаясь более точно, когда т близко к одному из корней уравнения (103.8). Тогда имеет место резонанс.  [c.374]


Точное аналитическое решение линейной или предварительно линеаризованной многомерной задачи нестационарной теплопроводности удается получить лишь для элементов конструкций сравнительно простой геометрической формы, ограниченных координатными поверхностями в какой-либо одной системе ортогональных координат. Для большинства таких тел известна и табулирована [42, 56] система собственных функций и спектр собственных значений соответствующей однородной задачи. Поэтому для подобных тел удобно использовать достаточно универсальный метод конечных интегральных преобразований. При однородных граничных условиях и одинаковой во всех точках тела начальной температуре решение многомерной задачи для тел простой формы удается представить в виде произведения решений соответствующих одномерных задач [42, 55].  [c.203]

Точное аналитическое решение линейной или предварительно линеаризованной многомерной задачи нестационарной теплопроводности удается получить лишь для тел сравнительно простой геометрической формы, ограниченных координатными поверхностями в какой-либо одной системе ортогональных координат. Для большинства таких тел известны и табулированы [25] система собственных функций и спектр собственных значений соответствующей однородной задачи. Поэтому для подобных тел удобно использовать достаточно универсальный метод конечных интегральных преобра-  [c.160]

Итак, сформулирована линейная однородная краевая задача (4.5.5), (4.5.6) на собственные значения, минимальные из которых — критическая интенсивность давления. Упростим эту задачу, опустив в системе уравнений (4.5.5) подчеркнутые члены, которыми учитывается влияние докритических деформаций. В гл. 7 будет показано, что неучет влияния этих членов приводит к несущественной относительной погрешности в определении критических интенсивностей давления для длинной круговой жестко защемленной панели и ими допустимо пренебречь. Опустив в (4.5.5) подчеркнутые слагаемые, приходим к системе линейных дифференциальных уравнений с постоянными коэффициентами. Относительно простое строение матрицы ее коэффициентов позволяет в явном виде указать четыре собственных значения этой матрицы  [c.125]

Так, в рассмотренной выше задаче о тепловых потерях трубопровода, заложенного в грунт, нет возможности просто суммировать термическое сопротивление грунта, вычисленное по формуле (7.114), с термическим сопротивлением воздуха над грунтом. Действительно, при конечном значении а меняется термическое сопротивление собственно грунта, так как его поверхность перестает быть изотермической. Кроме того, неясно, как вычислить собственно внешнее термическое сопротивление, когда поверхность грунта бесконечно велика. В то же время точное решение уравнения теплопроводности с граничным условием третьего рода существенно сложнее, чем в рассмотренном случае задания граничного условия постоянной температуры контура. В подобных случаях оказывается возможным удовлетворительно учесть конечную величину а путем введения в расчетную формулу, полученную для случая а = оо, линейного размера системы, увеличенного на толщину дополнительной стенки б.  [c.98]


Теорема 13. Внешняя неоднородная динамическая задача (Од) имеет, и притом единственное, решение для произвольного граничного задания класса Н и при любом значении параметра 0)2. Решение выражается потенциалом двойного слоя (первого рода), если отлично от собственных частот внутренней задачи (Г ), и линейной комбинацией потенциала двойного слоя с некоторыми потенциалами простого слоя, если есть одна из собственных частот задачи (Т ).  [c.199]

Теорема 15. Смешанная динамическая внешняя задача (М,) имеет, и притом единственное, решение для произвольного граничного задания класса Н. Решение выражается потенциалом простого слоя, если отличны от собственных частот задачи (D ), и представляется в виде линейной комбинации некоторых дискретных потенциалов типа простого слоя, если 0)2 совпадает с одним из исключенных выше значений.  [c.202]

На практике бывает затруднительно задавать колебания дебитов таким образом, чтобы объем закачанной (отобранной) жидкости в скважину за первые полпериода был бы равен объему отобранному (закаченному) из скважины за вторые полпериода. Обычно происходит смена режимов закачка - простой , отбор - простой или их комбинации. Нри этом в пласте возникает и со временем нарастает не скомпенсированный объем закачанной или отобранной жидкости. В результате, наблюдается общее повышение (понижение) давления, что видно из рис.4.1. Здесь показано общее решение для изменения давления (кривая 1) в фиксированной точке наблюдения, которое представляет собой суперпозицию решения для собственно гармонических фильтрационных волн давления (кривая 2) и решения задачи о пуске скважины с постоянным дебитом (кривая 3). Для линейных систем при разделении вкладов этих двух процессов в общее решение должны получиться одни и те же значения параметров пластов. Этот факт может быть использован для контроля вычислений.  [c.23]

Перейдем к рассмотрению уравнений (7.8) и (7.9) при % = = —] (т. е. для задач и Л ). Рассмотрим уравнение (7.8), которое имеет (в силу теоремы Гаусса (6.28)) очевидное решение фо=1, а, следовательно, Х = —1—собственное значение уравнения. Таким образом, приходим к утверждению, что уравнение (7.9) (как союзное) будет иметь при Х = —1 собственные функции. Покажем, что собственная функция — одна. Обозначая эту функцию через фо и рассматривая ее как плотность, образуем потенциал простого слоя Р(р, фо). Предельное значение его нормальной производной изнутри будет равно нулю, и поэтому сам потенциал будет равен некоторой постоянной Со- Если допустить, что уравнение (7.9) при X = —1 имеет еще одно решение фь линейно независимое с фо, то тогда потенциал Г(р, фО будет равен С. Образуем теперь плотность фа = С1фо — Софь которая также будет собственной функцией, причем потенциал Е(р, фа) будет равен нулю в области D+, а значит, и в области 0 . Поэтому его плотность фа есть тождественный нуль, а, следовательно, функции фо и ф1 линейно зависимы. Следовательно, уравнение (7.8) будет иметь лишь одну указанную ранее собственную функцию.  [c.101]

Как показано в 1, исследование спектра малых нормальных возмущений основного конвективного течения (1.13) и его линейной устойчивости сводится к решению спектральной амплитудной задачи (1.24) —(1.26). Задача на собственные значения для системы высокого порядка с переменными коэффивд1ентами и малыми параметрами при старших производных достаточно сложна, и возможности ее аналитического решения предельно ограничены. Достигнутые в последнее время успехи, как, впрочем, и в случае более простой задачи устойчивости изотермических течений, связаны с применением различных численных методов, реализуемых на ЭВМ, В этом параграфе кратко описываются три получивших наиболее широкое распространение численных метода. При этом мы ни в коей мере не претендуем на освещение вопросов математи юского обоснования методов и на изложение деталей соответствующих численных алгоритмов.  [c.20]

Задачу о разложении колебаний на простейшие естественно перенести с систем, имеющих конечное число степеней свободы, на случай колебания континуумов, напр, стоуны. Такой переход приводит к необходимости обобщить задачу о нахождении собственных векторов и собственных значений линейного преобразования па нек-рый класс линейных операторов н гилъбертоео.н пространстве. В частности, для случая колебания струны соответствующий оператор имеет вид  [c.5]


Чтобы решить эту задачу, воспользуемся результатом, который будет получен в 28 независимо от настоящих исследований. Согласно (27), линейная часть правой стороны в (28) имеет матрицу коэффициентов 8. Пусть Ах,. .., Аб — собственные числа 8, т. е. корни полинома А — , где Ах,. .., А/ имеют отрицательную вещественную часть. Благодаря ограничениям, наложенным в 28, в дальнейшем будем иреднолагать, что собственные значения А1,. .., Ае — простые, никакое из них не является чисто мнимым или нулем, и для всех систем  [c.118]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]


Смотреть страницы где упоминается термин Простая линейная задача на собственные значения : [c.478]   
Смотреть главы в:

Методы возмущений  -> Простая линейная задача на собственные значения



ПОИСК



Задача на собственные значения

Линейная задача

Простейшие задачи

Собственное значение значение

Собственные значения



© 2025 Mash-xxl.info Реклама на сайте