Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Временная и пространственная когерентность, степень когерентности

При описании интерференционных явлений часто используют понятия временной и пространственной когерентности. Временную когерентность обычно связывают со степенью монохроматичности исследуемых колебаний, а степенью пространственной когерентности характеризуют геометрию экспериментов. В дальнейшем (см. 5.3) понятие пространственной когерентности подробно обсуждается при рассмотрении наложения интерференционных картин от многих элементарных источников, образующих протяженный источник света.  [c.179]


При описании пространственной когерентности следует учитывать излучение света двумя пространственно разделенными точечными источниками Si и S2. В предельном случае мы полагаем Д< = О и обозначаем комплексную степень когерентности У12(0)- Следовательно, /12(0) характеризует корреляцию колебаний в один момент времени, но в разных точках пространства.  [c.202]

Лазерные установки. Излучение оптического квантового генератора (лазера) характеризуется большой интенсивностью потока электромагнитной энергии, высокой монохроматичностью, значительной степенью временной и пространственной когерентности. Вследствие этого лазерное излучение отличается от других источников электромагнитной энергии очень узкой направленностью. Диапазон длин волн, генерируемых различными типами лазеров и применяемых для технологических целей, колеблется в интервале 0,4—10,6 мкм. Возможность концентрирования энергии на малой площади за сравнительно короткое время позволяет использовать лазер для соединения тончайших изделий или их сочетания с массивными элементами конструкций, а также изделий, материалы которых чувствительны к тепловому воздействию.  [c.181]

Разумеется, при записи реальной голограммы влияние временной и пространственной когерентности на восстановленное голограммой изображение гораздо более сложно, чем в рассмотренных предельных случаях. В целом можно сказать, что ограничение степени временной и пространственной когерентности приводит к тому, что яркость восстановленного голограммой изображения модулируется как по глубине, так и в поперечном направлении. При этом перемещение точки наблюдения восстановленного изобра кения вызывает перемещение картины модуляции.  [c.84]

Временная и пространственная когерентность лазерного источника, используемого для записи голограммы и восстановления с нее изображения, определяет не только свойства полученной голограммы, но также то, насколько сложной будет конфигурация оптической системы, применяемой для записи голограммы. Временная когерентность связана с конечной шириной полосы частот излучения источника, а пространственная когерентность — с его конечной протяженностью в пространстве. В газовом лазере временная когерентность определяется временными (или продольными) и пространственными (или поперечными) модами лазерного резонатора. Самая высокая степень как пространственной, так и временной когерентности получается в режиме одномодовой генерации. В 2.3 приведены точные математические определения временной и пространственной когерентности источников света и их влияние на процессы записи голограмм и восстановления с них изображения.  [c.287]


Лазер обычно представляет собой резонатор, заполненный средой с отрицательным электромагнитным поглощением. Резонатор необходим для того, чтобы снизить радиационные потери в среде с малым усилением за счет циркуляции электромагнитной энергии (в узкой полосе частот), которая дает возможность восполнить потери энергии, обусловленные вынужденным излучением. Для получения же электромагнитной энергии, обладающей свойствами лазерного излучения (спектральным сужением, высокой степенью временной и пространственной когерентности, высокой степенью коллимации), резонатор не требуется. Излучение с такими свойствами (в инфракрасной,  [c.225]

Излучение оптическими квантовыми генераторами (ОКГ) характеризуется рядом уникальных свойств большой интенсивностью (мощностью) потока электромагнитной энергии, высокой монохроматичностью, значительной степенью временной и пространственной когерентности. Вследствие этого лазерное излучение отличается от излучения других источников электромагнитной энергии очень высокой направленностью своего распространения и возможностью фокусирования на площадях малых размеров, т. е. высокой концентрацией энергии.  [c.26]

Опорная волна при записи голограммы должна быть когерентна со светом, рассеянным всеми точками объекта. Для получения голограммы большого объекта необходимо излучение с высокой степенью временной и пространственной когерентности. Длина когерентности должна превосходить максимальную разность хода между опорной и предметными волнами, которая для трехмерного объекта практически совпадает с его размерами. Размеры области пространственной когерентности должны быть больше размеров голограммы. Одновременное выполнение этих условий возможно только при использовании лазерного излучения. Для получения четкой интерференционной картины при записи голограммы необходимо также обеспечить во время экспозиции неподвижность всех элементов с точностью до долей длины волны.  [c.385]

Основной причиной турбулентного уширения лазерного пучка в атмосфере является нарушение пространственной когерентности. Когерентность излучения определяет способность света создавать интерференционную картину и характеризуется комплексной степенью когерентности [7]. Чем выше когерентность излучения (пространственная и временная), тем сильнее сказывается искажающее влияние турбулентности атмосферы на его свойствах.  [c.42]

Разность хода между опорной волной и волнами, рассеянными предметом, очень велика и может составлять несколько метров. Поэтому при изготовлении голограммы время когерентности света должно быть очень велико (не меньше 10 — 10 с). Длина когерентности также должна быть очень большой (не меньше 1—10 м). Никакие источники света, кроме лазеров, не могут обеспечить столь высокую степень временной и пространственной когерентности. Кроме того, необходима неподвижность (с точностью до долей длины световой волны) и высокая контрастность интерференционной картины, образующейся в области перекрытия предметного и опорного пучков во время экспозиции. Для этого также требуется высокая когерентность света, а также механическая жесткость всех элементов голографической установки.  [c.345]

Хотя прогресс нелинейной оптики после изобретения лазеров связан в первую очередь с возможностью получения значительных напряженностей световых полей, следует иметь в виду и другое немаловажное обстоятельство. Нелинейные оптические эффекты являются, как правило, волновыми эффектами (протяженность нелинейной среды в опыте составляет 10 —10 длин волн) поэтому на протекание нелинейного эффекта существенно влияет временная и пространственная когерентность излучения. При высокой степени когерентности возможно накопление даже весьма слабых нелинейных оптических эффектов на больших расстояниях. Именно последним обстоятельством объясняется все возрастающая роль газовых лазеров в нелинейной оптике (см., например, [20, 21, 44]). Можно думать, что в бли-  [c.13]


Временная и пространственная когерентность, степень когерентности  [c.97]

Следует отметить ряд особенностей голографического процесса, важных с точки зрения его практического использования. Во-первых, он имеет существенное сходство с интерферометрией, и поэтому во время экспозиции голограммы должны быть обеспечены очень стабильные условия. Относительное смещение фотографической пластинки и объекта в течение этого времени, достигающее порядка четверти длины волны, может смазать тонкую структуру интерференционных полос и, таким образом, не будет восстановлено никакого изображения. Во-вторых, поскольку наблюдается интерференция между волнами, которые могут распространяться вдоль существенно различных оптических путей, необходимо использовать свет с высокой степенью когерентности. Разность оптических путей можно оценить геометрически, однако для объекта произвольной формы она может составлять несколько сантиметров. Конечно, лазер обеспечивает необходимую для этого временную и пространственную когерентность. В-третьих, для того чтобы получить хорошее поле зрения, необходимо использовать фотографическую эмульсию с весьма высокой разрешающей способностью. Это требование вытекает из того обстоятельства, что если угол между осью опорного пучка и некоторым произвольным рассеянным лучом, идущим от объекта, равен 0, то расстояние между интерференционными полосами б определяется соотношением  [c.183]

Условимся обозначать Ут(АО комплексную степень когерентности, используемую при описании опытов, в которых интерферируют два пучка света, излучаемые точечным источником, и будем называть ее функцией временной когерентности. Оче видно, что у II (At) характеризует корреляцию между колебаниями в одной точке в разные промежутки времени, т.е. учитывает задержку во времени достижения этой точки одним из интерферирующих пучков. В следующем параграфе мы ознакомимся с понятием пространственной когерентности, которую будем обозначать У12(А0 или 712(0)-  [c.193]

Дополнительный способ описания различия между излучениями лазера и теплового источника состоит в том, что для соответствующих полей вводятся должным образом определенные функции когерентности высшего порядка. Действительно, в разд. 7.5 когерентные свойства волны были определены с помощью корреляционной функции Поскольку эта функция включает в себя произведение сигналов, полученных в два разных момента времени или в двух различных точках пространства, она называется корреляционной функцией первого порядка. Соответственно степень когерентности, определяемая с помощью этих функций, описывает статистические свойства волны только первого порядка. В действительности, чтобы получить полное описание поля, необходимо ввести целый класс корреляционных функций высшего порядка. Для краткости обозначим пространственные и временные координаты точки через Xi= ri, ti). При этом корреляционную функцию л-го порядка можно определить следующим образом  [c.473]

Рис. 27. К рассмотрению понятий временная (продольная) и пространственная (поперечная) когерентность. Атомы источника S испускают ограниченные во времени и пространстве цуги волн С[, Сг, Сз. Степень временной когерентности излучения в точке Zi определяется способностью к взаимной интерференции компонент колебаний в этой точке при их взаимном смещении во времени. Если разность хода луча в плечах интерферометра Z2 и Z3 превышает длину цуга р, то интерференция в точке а не наблюдается. Пространственная когерентность определяет способность к взаимной интерференции излучения в точках поля, расположенных поперек луча. В частности, если отверстия Si и 5г находятся на расстоянии, меньшем ширины цуга Л, то и излучение, прошедшее через эти отверстия, образует в районе точки В устойчивую картину интерференции (график а ). При смещении отверстия 5г в положение S2 расстояние между отверстиями превышает поперечные размеры дуга. Интерференция в этом Рис. 27. К рассмотрению <a href="/info/129479">понятий временная</a> (продольная) и пространственная (поперечная) когерентность. Атомы источника S испускают ограниченные во времени и пространстве цуги волн С[, Сг, Сз. <a href="/info/144151">Степень временной когерентности</a> излучения в точке Zi определяется способностью к взаимной интерференции компонент колебаний в этой точке при их взаимном смещении во времени. Если <a href="/info/164756">разность хода луча</a> в плечах интерферометра Z2 и Z3 превышает длину цуга р, то интерференция в точке а не наблюдается. <a href="/info/10179">Пространственная когерентность</a> определяет способность к взаимной интерференции излучения в точках поля, расположенных поперек луча. В частности, если отверстия Si и 5г находятся на расстоянии, меньшем ширины цуга Л, то и излучение, прошедшее через эти отверстия, образует в районе точки В устойчивую картину интерференции (график а ). При смещении отверстия 5г в положение S2 расстояние между отверстиями превышает поперечные размеры дуга. Интерференция в этом
Импульсные лазеры, если не приняты специальные меры, обладают меньшей пространственной и временной когерентностью, чем большинство непрерывных лазеров. В большинстве голографических микроскопов при формировании объектного и опорного пучков полезно иметь амплитудное деление волнового фронта, при условии что разностью длин путей объектного и опорного пучков от светоделителя до пленки можно будет управлять, делая ее меньше, чем длина когерентности источника света. Поскольку голограмма должна иметь максимально достижимый контраст интерференционных полос, комплексная степень когерентности должна быть максимальной в отсутствие посторонних источников шума.  [c.630]

Степень когерентности лазера определяется постоянством разности фаз излучаемого света в двух фиксированных точках пространства в течение некоторого периода времени. Разность фаз в двух точках вдоль направления распространения света за время At определяет временную, или продольную, когерентность лазерного источника, а в плоскости, перпендикулярной направлению распространения света,— пространственную, или поперечную, когерентность. Оба вида когерентности взаимосвязаны, и это приводит к ограничениям при аппаратурном решении оптических схем лазерных генераторов.  [c.35]

Излучение лазера имеет высокую степень пространственной когерентности, поскольку все волновые фронты плоские и перпендикулярны направлению распространения волн. Это излучение когерентно и во времени, ибо имеется строгое фазовое соответствие между частью волны, испускаемой в один момент времени, и волной, испускаемой спустя некоторый промежуток времени. Причем, чем выше стабильность излучения по частоте, тем более отчетливо проявляется свойство когерентности волны во времени.  [c.20]


О комплексной степени когерентности, удовлетворяющей такому равенству, говорят, что она приводима, и мы видим, что в пределах сделанных выше приближений и ограничений, приводимость эквивалентна взаимной спектральной чистоте. Свойство приводимости комплексной степени когерентности и есть то свойство, которое мы намеревались исследовать. Точнее, мы хотели выяснить, при каких условиях комплексная степень когерентности может быть представлена в виде произведения пространственной и временной частей. Так как то — постоянная ве-  [c.186]

Факторизация комплексной степени когерентности приводит к значительным упрощениям во многих задачах, в которых важную роль играет как временная, так и пространственная когерентность. Такая факторизация возможна, если свет является взаимно спектрально чистым. Нередко предположение о взаимной спектральной чистоте принимается просто без всякого обоснования, только потому, что оно приводит к упрощению. Но такое предположение не всегда соответствует действительности. Например, в случае источника, спектр излучения которого зависит от угла, свет не обладает взаимной спектральной чистотой. Такого рода источник рассматривается в п. В.  [c.187]

По определению мы называем колебания в точках Qi и в моменты времени /х и 2 (т. е. в пространственно-временных точках Pi и Rg) когерентными или некогерентными, если когерентны или некогерентны соответствующие колебания в точке Р. При этом степень когерентности y (6) мы определяем той же величиной. Что и для колебаний в точке наблюдения.  [c.224]

В основном различают два типа когерентности — пространственную и временную. Чтобы свет обладал временной когерентностью, он должен состоять из волн одной строго определенной длины иными словами,. это должен быть строго монохроматический свет. Пространственная когерентность характеризует регулярность фазы световой волны по ее фронту (временная когерентность, как мы виде.пи, связана с регулярностью фазы световой волны вдоль направления ее распространения). Свет с высокой степенью временной когерентности можно описать, считая, что все гребни волн должны распространяться в пространстве на строго определенных одинаковых расстояниях друг от друга. Если гребни какой-либо плоской световой волны неожиданно собьются с шага так, что интервал между последующими гребнями увеличится, то это будет равносильно внезапному изменению разности фаз между. этой и другой, интерферирующей с ней волной. В таком случае интерференционная картина смещается на. экране влево или вправо. В излучении, не обладающем временной когерентностью, интервалы между гребнями волн случайны и нерегулярны, по.этому интерференционная картина смещается очень быстро и хаотически. В результате мы видим равномерно освещенный экран.  [c.11]

Уникальные свойства лазерного излучения — высокая монохроматичность, пространственная и временная когерентность, направленность и интенсивность — делают лазер идеальным источником для широкого использования в метрологии, в сильной степени определяющей состояние и развитие промышленности.  [c.228]

В 5.6 описаны опыты, в которых исследовалась зависимость видимости интерференционной картины от степени монохрома-гичности излучения, используемого для освещения интерферометра Майкельсона. Эти классические опыты позволили внести простейшие понятия теории когерентности и явились базой дальнейшего развития методов спектроскопии (Фурье-спектроскопия и др.). В последующем изложении мы подробно рассмотрим физический смысл понятий временной и пространственной когерентности, играющих большую роль при выборе оптимальных условий эксперимента по интерференции различных световых потоков.  [c.185]

Условно когерентность можно разделить на временную (продольную) и пространственную (поперечную). Схема явлений, описываемых понятиями временная и пространственная когерентность , приведена на рис. 27. Каждый атом источника 5 испускает излучение в течение какого-то определенного ограниченного времени. В результате в пространстве возникают цуги воли j, Сг, Сз, ограниченные по глубине расстоянием р, равным произведению скорости света на время излучения атома, а в поперечном направлении некоторым размером h, который зависит от размера источника /. Ограничение размера цуга в продольном направлении уменьшает степень временной когерентности источника, в поперечном — простраиственной. В целом оба явления ухудшают условия интерференции испускаемого источником излучения.  [c.75]

Теорема Ван-Циттерта—Цернике. В 26, 27 были рассмотрены конкретные случаи проявления временной и пространственной когерентности. Поскольку степень когерентности определяет видимость интерференционной картицы, важно уметь находить степень когерентности излучения, не зная видимости интерференционной картины. Для квазимонохроматического  [c.200]

Сигнальная и опорная волны при записи голограммы должны быть когерентными между собой. Ширина когерентности должна быть, во всяком случае, не меньше размеров предмета, а длина когерентности — не менее разности хода сигнальной и опорной волн. В реальных условиях это означает, что при записи голограммы необходимо использова ть излучение с высокой степенью временной и пространственной когерентности. Этим требованиям отвечает лазерное, излучение. Восстанавливаются голограммы также с помощыо лазеров. Однако при восстановлении голограммы частота лазерного излучения может отличаться от частоты, использованной при записи голограммы. Это следует из того факта, что восстановление голограммы сводится к дифракции падающей ш голограмму волньь Прт увеличении длины волны дифракционные углы увеличив тся. Поэтому при восстановлении голограммы излучением с большей, чем при записи, длиной волнь изображение увеличивается по сравнению с оригиншюм.  [c.254]

Чтобы хоть немного упростить анализ, мы сделаем ряд предположений относительно характера света, падающего на фоточувствительную поверхность. Предположим, чтО свет имеет тепловое происхождение и полностью поляризован. Кроме того, предположим, что он обладает взаимной спектральной чист0 той. Тогда комплексная степень когерентности может быть представлена в виде произведения временной и пространствен-ной компонент. Наконец, как временные, так и пространствен-ные флуктуации интенсивности предполагаются по крайней мере стационарными в широком смысле ). Тогда  [c.451]

Принципы построения оптических схем. В качестве источни- ков излучения в голографии применяются лазеры непрерывного и импульсивного действия, излучение которых характеризуется высокой степенью временной и пространственной когерентности и значительной мощностью. Развитие голографических  [c.388]

В оптике понятие когерентности вводится для характеристики скоррелированности световых колебаний в различных точках пространства и в различные моменты времени. Поэтому наиболее логично степень когерентности определять посредством корреляционной функции светового поля. Рассмотрим для простоты поляризованное поле, вектор напряженности электрического поля Е в котором колеблется в определенном направлении. Если вектор напряженности содержит компоненту, случайным образом изменяющуюся по пространственным координатам г и по времени t, то можно построить следующую корреляционную функцию  [c.10]

И радиоантеиным сканирующим системам. Позже с соответствующими оговорками мы проанализируем свойства оптических систем, линейных относительно комплексной амплитуды, т. е. систем, которые работают с когерентным излучением. Но пока что ограничимся рассмотрением некоторых идеальных оптических систем, для которых освещенность некогерентна, увеличение равно единице и распределение освещенности на изображении точечного источника не изменяется в пределах рабочего поля прибора. Степень практической применимости результатов, полученных при таких ограничениях, будет исследована позже. Перейдем теперь к сравнению характеристик временных и пространственных фильтров.  [c.31]


В заключение еще раз отметим высокую степень временной и простра гственной когерентности лазерных излучений. Это подтверждается в опытах с лазерными источниками, когда четкая интерференционная картина наблюдается при наложении лучей, исходящих из пространственно разделенных точек источника, создающих раз-)юсть хода в несколько десятков метров.  [c.92]

Информационными параметрами ОИ являются пространственно-временнйе распределения его амплитуды, частоты, фазы, поляризации и степени когерентности- Для получения дефектоскопической информации используют изменение этих параметров при взаимодействии ОИ с ОК U соответствии с явле-. нпями интерференции, дифракции, поляризации, преломления, отражения, поглощения, расг еяння, дисперсии света, а также изменение характеристик  [c.48]

Часто под Д. с. понимают процедуру искусств, снижения степени поляризации света, необходимую для проведения эксперимента или функционирования он-редел, оптич. устройства. В тех случаях, когда потери яркости пучка допустимы, для этой цели используют рассеяние света в мутной среде или на матовой поверхности. Задача полной (или, точнее, истинной) Д. с. без снижения яркости светового пучка представляется практически неразрешимой. Поэтому при решении конкретных задач поляризац. оптики процедуру истинной Д. с. заменяют процедурой псевдополяризации. При этом каждая монохроматич. компонента светового пучка в каждый момент времени и в каждой точке пространства (точнее в пределах любой площадки когерентности) сохраняет исходную степень поляризации, но вследствие пространственной, временной или спектральной модуляции состояния поляризации пучок в целом для практических целей становится неотличимым от неполяризованного. Временная модуляция состояния поляризации света может осуществляться, напр., путём вращения с разными скоростями помещённых в световой пучок линейных фазовых пластинок. Для получения пространственной (по сечению пучка) поляризац, модуляции могут использоваться клиновидные фазовые пластинки. При работе с пучками широкого спектрального состава эффективными псевдодеполяриааторами могут служить сильнохроматич. фазовые пластинки, изготовленные из прозрачных кристаллов с большим двойным лучепреломлением (т. н. деполяризаторы Л но). Их использование приводит к спектральной модуляции поляризац. состояния света.  [c.583]

Весьма эффективным методом улучшения пространственных и временных характеристик излучения ПГС является инжекция маломощного внешнего сигнала с высокой степенью когерентности. В этом случае генерация развивается не от уровня шумов, а от уровня инжектируемого сигнала. Для инжекции можно использовать излучение полупроводниковых лазеров [41] или лазеров на красителе, синхронно-накачиваемых частью цуга излучения задающего генератора. В отличие от полупроводниковых лазеров, имеющих узкий диапазон перест-  [c.257]

В нашем зксперименте излучение, соответствующее различным поперечным модам, равномерно распределено по пространству, и с помощью оптической системы формирования изображения из него вьщелен относительно узкий пучок. Эта ситуация зквивалентна наличию одной поперечной моды с богатым набором продольных. Позтому стабильная интерференционная картина существует во всей зоне суперпозиции опорной и объектной волн в силу вьшолнения условия пространственной когерентности - любые произвольно выбранные области зтих пучков взаимно скоррелированы. На основании такого предположения и записано выражение (3.14) для амплитуды объектной волны диффузно рассеянного многомодового излучения. Следовательно, вместо степени когерентности I7i2(r)l в зтом-случае можно рассматривать степень временной когерентности 1мт( ) I воспользоваться приведенным, например, в [74] выражением для видности интерференционных полос  [c.54]

Функция взаимной когерентности и комплексная степень когерентности зависят как от пространственных, так и от временных координат. Если свет является квазимонохроматическим, т. е. Av v(mnpnHa полосы частот много меньше, чем средняя частота спектра излучения), то существенна лишь зависимость от пространственных координат. На основании экспериментальных данных условие когерентности состоит в том, чтобы максимальная величина т была меньше, чем 1/Av, и, следовательно, максимальная разность оптических путей меньше, чем где К — средняя длина волны  [c.57]

Открытие Габора опередило на 10 лет создание когерентных источников света — лазеров. Начальный этап развития голографии, создание первой голографической системы Габора и эксперименты по записи основных го юграмм и восстановлению изображений проходили с помощью обычных источников света непрерывного излучения. До создания лазера когерентный свет получали с помощью газоразрядных лама, излучавших отдельные узкие спектральные линии. Соответствующим светофильтром выделялась требуемая линия излучения, и сконцентрированный пучок света направлялся через очень маленькое круглое отверстие. Путем такой частотной и пространственной фильтрации удалось получить световую волну с такой степенью когерентности, которая позволила продемонстрировать запись и восстановление голограммы. Габор в своих экспериментах применял ртутные дуговые лампы высокого давления. Для получения достаточной пространственной н временной когерентности он использовал точечное отверстие диа.метром около 1 мкм и с помощью узкополосного светофильтра выделял зеленую линию спектра.  [c.6]

Оптичеср1й неразрушающий контроль основан на взаимодействии электромагнитного излучения с контролируемым объектом и регистрации результатов этого взаимодействия. Методы, относящиеся к оптическому НК по ГОСТ 24521-80, различаются длиной волны излучения или их комбинацией, способами регистрации и обработки результатов взаимодействия излучения с объектом. Общим для всех методов является диапазон длин волн электромагнитного излучения который составляет 10" ...10 м (3 10 .,.3 10 Гц) и охватывает диапазоны ультрафиолетового (УФ), видимого (ВИ) ((3,8...7,8) 10" м) и инфракрасного (ИК) излучения, а также информационные параметры оптического излучения, которыми являются пространственно-временное распределение его амплитуды, частоты, фазы, поляризации и степени когерентности. Изменение этих параметров при взаимодействии с объектом контроля в соответствии с основными физическими явлениями (интерференции, поляризации, дифрак-ции преломления, отражения, рассеяния, поглощения и дисперсии излучения), а также изменения характеристик самого объекта в результате эффектов люминесценции, фотоупругости, фотозфомизма и др. используют для получения дефектоскопической информации. Оптическое излучение — это электромагнитное излучение, возникновение которого связано с движением электрически заряженных частиц, переходом их с более высокого уровня энергии на более низкий. При этом происходит испускание световых фотонов.  [c.53]

Многие задачи теории когерентности упрощаются, если комплексная степень когерентности рассматриваемого излучения может быть представлена в виде произведения компоненты, зависящей только от пространственных координат, и компоненты, зависящей только от временной задержки. Такая функция когерентности называется приводимой. Это условие, как мы увидим, эквивалентно некоторому условию в спектральном представлении, называемому условием взаимной спектральной чистоты. Данное понятие было введено Манделем [5.25]. Для большей ясности мы сначала (п. А) рассмотрим общую задачу какова форма полной спектральной плотности мощности при наложении двух разных световых пучков с одинаковой нормированной  [c.181]

Строго говоря, мы требуем лишь, чтобы модули комплексной степени когерентности зависели только от разностей пространственных и временных координат. Это требование мягче требования стационарности в широком смысле и удовлетворяется, например, в случае пространственных когерентных эффектов, описываемых теоремой Ван Циттерта —Цернике.  [c.451]

Подавление ди акционных возмущений с помощью нарушения пространственной однородности или временной когерентности излучения. Дифракционные возмущения, возникающие в пучке вследствие интерференции дифрагированной и плоской волн, можнО устранить, вводя в пучок мелкомасштабные фазовые неоднородности, которые могут носить случайный или регулярный характер. Введение случайных фазовых неоднородностей, возможное, например, с помощью травленных в плавиковой кислоте стеклянных пластин, приводит к уширению угловой расходимости излучения до величины 0= (йр) , где р — характерный поперечный размер неоднородности. Подавление дифракции происходит за счет увеличения угловой расходимости, что ведет к уменьшению яркости излучения. Однако при использовании этого метода возможно восстановление высокой яркости при использовании эффектов ОВФ или усреднения (см. 4.3). Подавление дифракционно-интерференционных эффектов возможно не только при пространственном разупорядоче-нии пучка, но и при уменьшении степени его временной когерентности, характеризуемой длиной когерентности к=ст , где — время когерентности, связанное с шириной спектра излучения соотношением т =1/Ау. Для подавления дифракционных возмущений необходимо, чтобы длина когерентности была меньше длины развития дифракционных возмущений, следующей из формулы (4.25)  [c.157]


Это взаимодействие проявляется в различных физических и физико-химических эффектах - пошощении и нагреве, преломлении и т.п., сопровождающихся преобразованием пространственных, спектральных, интен-сивностных, поляризационных, временных характеристик и степени когерентности ОИ.  [c.55]

Применение когерентного излучения. Высокая степень монохроматичности и малая расходимость когерентного оптического излучения определяют области его практического использования. Излучение с высокой временной когерентностью может быть использовано для передачи информации на оптических частотах при решении задач, связанных с оптической интерференцией (измерение расстояний, линейных и угловых скоростей, деформаций поверхностей и т. д.) в качестве стандарта частоты. Высокая направленность пространственно-когерентного излучения обусловливает ряд его преимуществ перед некогерентным излучением небольшую величину энергетических потерь, связанных с расходимостью пучка высокое угловое разрешение, поз- воляющее точно направить луч на малый объект и существенно сократить помехи возможность пространственной фильтрации при приеме сигналов. Отсюда следует, что узконапрявленное оптическое излучение может быть эффективно использовано при передаче информации на большие расстояния, при оптической локации удаленных объектов (особенно для выделения объекта среди других целей), при измерении углов и расстояний по принципу, на  [c.343]


Смотреть страницы где упоминается термин Временная и пространственная когерентность, степень когерентности : [c.410]    [c.455]    [c.343]    [c.457]    [c.474]    [c.189]   
Смотреть главы в:

Основы оптики  -> Временная и пространственная когерентность, степень когерентности



ПОИСК



Временная когерентность степень

Когерентная (-ое)

Когерентное 1ь временная

Когерентное пространственная

Когерентность

Когерентность временная

Когерентность пространственная

Когерентность пространственная и временная

Когерентность степень

Ось временная

Пространственная когерентность степень

Степень пространственной и временной когерентности



© 2025 Mash-xxl.info Реклама на сайте