Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Степень пространственной и временной когерентности

Степень пространственной и временной когерентности  [c.447]

Внедрение лазеров в практику физического зксперимента существенным образом способствовало интенсивному развитию голографии. Это представляется вполне естественным, поскольку именно при реализации процесса голографической регистрации волнового фронта в наиболее полной мере используется такое уникальное свойство лазерного излучения, как высокая степень пространственной и временной когерентности. Успешному построению теории голографических процессов способствовали применение, с одной стороны, хорошо развитого аппарата дифракционной теории формирования изображений и, с другой, - достижения статистической оптики и теории частичной когерентности.  [c.7]


Твердотельные лазеры, используемые в голографии, характеризуются высокой степенью пространственной и временной когерентности. Способность лазера излучать два импульса с коротким промежутком между ними также оказывается полезной для некоторых целей голографии. С целью получения больших голограмм с высоким разрешением желательно иметь опорный пучок с высокой степенью пространственной когерентности. Временная когерентность лазера определяет глубину объекта или сцены, которую может обеспечить голограмма. Способность к формированию двойного импульса существенна для некоторых применений при проведении неразрушающего контроля. Обычно две голограммы регистрируются на одну и ту же пластинку с интервалом между экспозициями  [c.279]

Уникальные свойства лазерного излучения — высокая монохроматичность, пространственная и временная когерентность, направленность и интенсивность — делают лазер идеальным источником для широкого использования в метрологии, в сильной степени определяющей состояние и развитие промышленности.  [c.228]

Импульсные лазеры, если не приняты специальные меры, обладают меньшей пространственной и временной когерентностью, чем большинство непрерывных лазеров. В большинстве голографических микроскопов при формировании объектного и опорного пучков полезно иметь амплитудное деление волнового фронта, при условии что разностью длин путей объектного и опорного пучков от светоделителя до пленки можно будет управлять, делая ее меньше, чем длина когерентности источника света. Поскольку голограмма должна иметь максимально достижимый контраст интерференционных полос, комплексная степень когерентности должна быть максимальной в отсутствие посторонних источников шума.  [c.630]

У при г = о дает значение степени пространственной когерентности, а при Г2 = - значение степени временной когерентности. Значения р=р1 и х = Т] , при которых степени пространственной и временной  [c.11]

В основном различают два типа когерентности — пространственную и временную. Чтобы свет обладал временной когерентностью, он должен состоять из волн одной строго определенной длины иными словами,. это должен быть строго монохроматический свет. Пространственная когерентность характеризует регулярность фазы световой волны по ее фронту (временная когерентность, как мы виде.пи, связана с регулярностью фазы световой волны вдоль направления ее распространения). Свет с высокой степенью временной когерентности можно описать, считая, что все гребни волн должны распространяться в пространстве на строго определенных одинаковых расстояниях друг от друга. Если гребни какой-либо плоской световой волны неожиданно собьются с шага так, что интервал между последующими гребнями увеличится, то это будет равносильно внезапному изменению разности фаз между. этой и другой, интерферирующей с ней волной. В таком случае интерференционная картина смещается на. экране влево или вправо. В излучении, не обладающем временной когерентностью, интервалы между гребнями волн случайны и нерегулярны, по.этому интерференционная картина смещается очень быстро и хаотически. В результате мы видим равномерно освещенный экран.  [c.11]


Дополнительный способ описания различия между излучениями лазера и теплового источника состоит в том, что для соответствующих полей вводятся должным образом определенные функции когерентности высшего порядка. Действительно, в разд. 7.5 когерентные свойства волны были определены с помощью корреляционной функции Поскольку эта функция включает в себя произведение сигналов, полученных в два разных момента времени или в двух различных точках пространства, она называется корреляционной функцией первого порядка. Соответственно степень когерентности, определяемая с помощью этих функций, описывает статистические свойства волны только первого порядка. В действительности, чтобы получить полное описание поля, необходимо ввести целый класс корреляционных функций высшего порядка. Для краткости обозначим пространственные и временные координаты точки через Xi= ri, ti). При этом корреляционную функцию л-го порядка можно определить следующим образом  [c.473]

Временная и пространственная когерентность лазерного источника, используемого для записи голограммы и восстановления с нее изображения, определяет не только свойства полученной голограммы, но также то, насколько сложной будет конфигурация оптической системы, применяемой для записи голограммы. Временная когерентность связана с конечной шириной полосы частот излучения источника, а пространственная когерентность — с его конечной протяженностью в пространстве. В газовом лазере временная когерентность определяется временными (или продольными) и пространственными (или поперечными) модами лазерного резонатора. Самая высокая степень как пространственной, так и временной когерентности получается в режиме одномодовой генерации. В 2.3 приведены точные математические определения временной и пространственной когерентности источников света и их влияние на процессы записи голограмм и восстановления с них изображения.  [c.287]

Критичны и когерентные свойства источников света. Лучшие голограммы получаются в свете, обладающем высокой степенью как пространственной, так и временной когерентности. Однако высокая степень пространственной когерентности способствует интерференции между объектными полями, исходящими из двух (или более) точек объекта, далеко отстоящих друг от друга. А высокая степень временной когерентности приводит к появлению спек-лов.  [c.630]

Заметим, что рассмотренная выше при анализе обшая форма иитерферограммы в опыте Юнга определяется эффектами как пространственной, так и временной когерентности. При нулевой оптической разности хода огибающая иитерферограммы указывает на эффект пространственной когерентности, а в ее посте- пенном убывании до нуля (сужении иитерферограммы) при больших оптических разностях хода находит выражение эффект временной когерентности. Позднее мы разделим эти два эффекта, но сначала нам нужно учесть геометрические соображения, которые позволят нам в большей степени конкретизировать форму иитерферограммы.  [c.172]

О комплексной степени когерентности, удовлетворяющей такому равенству, говорят, что она приводима, и мы видим, что в пределах сделанных выше приближений и ограничений, приводимость эквивалентна взаимной спектральной чистоте. Свойство приводимости комплексной степени когерентности и есть то свойство, которое мы намеревались исследовать. Точнее, мы хотели выяснить, при каких условиях комплексная степень когерентности может быть представлена в виде произведения пространственной и временной частей. Так как то — постоянная ве-  [c.186]

Основной причиной турбулентного уширения лазерного пучка в атмосфере является нарушение пространственной когерентности. Когерентность излучения определяет способность света создавать интерференционную картину и характеризуется комплексной степенью когерентности [7]. Чем выше когерентность излучения (пространственная и временная), тем сильнее сказывается искажающее влияние турбулентности атмосферы на его свойствах.  [c.42]

При описании интерференционных явлений часто используют понятия временной и пространственной когерентности. Временную когерентность обычно связывают со степенью монохроматичности исследуемых колебаний, а степенью пространственной когерентности характеризуют геометрию экспериментов. В дальнейшем (см. 5.3) понятие пространственной когерентности подробно обсуждается при рассмотрении наложения интерференционных картин от многих элементарных источников, образующих протяженный источник света.  [c.179]


Условимся обозначать Ут(АО комплексную степень когерентности, используемую при описании опытов, в которых интерферируют два пучка света, излучаемые точечным источником, и будем называть ее функцией временной когерентности. Оче видно, что у II (At) характеризует корреляцию между колебаниями в одной точке в разные промежутки времени, т.е. учитывает задержку во времени достижения этой точки одним из интерферирующих пучков. В следующем параграфе мы ознакомимся с понятием пространственной когерентности, которую будем обозначать У12(А0 или 712(0)-  [c.193]

Возвращаясь к уравнению (6,37), отметим, что мы до сих пор еще не видели, каким образом можно получить модуль и аргумент yjj из экспериментальных измерений у нас два неизвестных и только одно уравнение. Оценим вновь наше положение. Вначале для получения общей картины бьш постулирован источник, являющийся протяженным как в пространстве, так и по спектру. Все наши рассуждения до сих пор учитывали это, и в результате различные уравнения относительно Y12 не имеют ограничений по отношению к когерентности освещенности. Теперь вернемся к рис. 6.7 и проведем сравнение различных точек С1 и С2 в выборочной плоскости. Ясно, что эта схема в особенности чувствительна к пространственной (поперечной) когерентности. Для получения связи У12 с наблюдаемыми величинами разумно рассмотреть случай, когда временная когерентность не вносит искажений (разд. 6.4.1). Функция Ti 1 (х) особенно удобна для изучения временной когерентности, поскольку она характеризует степень сохранения фазовых соотношений для отдельных волновых углов.  [c.141]

Li/ )] и V г2, t — Li/ )], где ri и Гг — координаты точек Р и р2. Заметим, что время интегрирования Т в выражении для корреляционной функции [см. (7.13)] теперь равно времени регистрации полос (например, времени экспозиции фотопластинки). Если теперь точку Р на экране выбрать таким образом, чтобы L =l2, то видность полос в окрестности точки Р будет мерой степени пространственной когерентности между точками Р и Р2. Чтобы быть более точными, определим видность V(P) полос в точке Р следующим образом  [c.451]

Рис. 27. К рассмотрению понятий временная (продольная) и пространственная (поперечная) когерентность. Атомы источника S испускают ограниченные во времени и пространстве цуги волн С[, Сг, Сз. Степень временной когерентности излучения в точке Zi определяется способностью к взаимной интерференции компонент колебаний в этой точке при их взаимном смещении во времени. Если разность хода луча в плечах интерферометра Z2 и Z3 превышает длину цуга р, то интерференция в точке а не наблюдается. Пространственная когерентность определяет способность к взаимной интерференции излучения в точках поля, расположенных поперек луча. В частности, если отверстия Si и 5г находятся на расстоянии, меньшем ширины цуга Л, то и излучение, прошедшее через эти отверстия, образует в районе точки В устойчивую картину интерференции (график а ). При смещении отверстия 5г в положение S2 расстояние между отверстиями превышает поперечные размеры дуга. Интерференция в этом Рис. 27. К рассмотрению <a href="/info/129479">понятий временная</a> (продольная) и пространственная (поперечная) когерентность. Атомы источника S испускают ограниченные во времени и пространстве цуги волн С[, Сг, Сз. <a href="/info/144151">Степень временной когерентности</a> излучения в точке Zi определяется способностью к взаимной интерференции компонент колебаний в этой точке при их взаимном смещении во времени. Если <a href="/info/164756">разность хода луча</a> в плечах интерферометра Z2 и Z3 превышает длину цуга р, то интерференция в точке а не наблюдается. <a href="/info/10179">Пространственная когерентность</a> определяет способность к взаимной интерференции излучения в точках поля, расположенных поперек луча. В частности, если отверстия Si и 5г находятся на расстоянии, меньшем ширины цуга Л, то и излучение, прошедшее через эти отверстия, образует в районе точки В устойчивую картину интерференции (график а ). При смещении отверстия 5г в положение S2 расстояние между отверстиями превышает поперечные размеры дуга. Интерференция в этом
В этом параграфе будет рассмотрен вопрос о прохождении через идеальный и реальный ИФП светового цуга конечной длины I. Как указывалось ранее, для идеального ИФП степень пространственной когерентности проходящего через него света не оказывает влияния на вид интерференционной картины. Иное дело временная когерентность.  [c.88]

Степень когерентности лазера определяется постоянством разности фаз излучаемого света в двух фиксированных точках пространства в течение некоторого периода времени. Разность фаз в двух точках вдоль направления распространения света за время At определяет временную, или продольную, когерентность лазерного источника, а в плоскости, перпендикулярной направлению распространения света,— пространственную, или поперечную, когерентность. Оба вида когерентности взаимосвязаны, и это приводит к ограничениям при аппаратурном решении оптических схем лазерных генераторов.  [c.35]

Установим критерий для оценки временной когерентности обычных газоразрядных источников света. Временная когерентность излучения полностью определяется его спектральным составом. Из выражения (1.1.5) следует, что степень пространственной когерентности света в точках Si и плоскости ху (рис. 1.2.) зависит от координат точек только через угол 6 между световыми лучами, идущими от протяженного источника в данные точки. Рассмотрим случай, когда Si и расположены на пути одного и того же луча, исходящего из точечного  [c.11]

Излучение лазера имеет высокую степень пространственной когерентности, поскольку все волновые фронты плоские и перпендикулярны направлению распространения волн. Это излучение когерентно и во времени, ибо имеется строгое фазовое соответствие между частью волны, испускаемой в один момент времени, и волной, испускаемой спустя некоторый промежуток времени. Причем, чем выше стабильность излучения по частоте, тем более отчетливо проявляется свойство когерентности волны во времени.  [c.20]

Второй недостаток источников света — их конечная протяженность. Источники естественного света состоят из множества излучателей, испускающих монохроматические волны с разными и случайными относительными фазами в течение времени когерентности. Внутри довольно малого пространственно-временного интервала возможна довольно высокая степень корреляции в пространственно-амплитудном распределении, обусловленная согласованным действием излучателей, образующих волновой фронт. Если же корреляции амплитуд в последовательные моменты времени нет, то пространственная когерентность отсутствует. В лазерах пространственно распределенные источники вынуждены излучать в фазе и область пространственной  [c.363]


Точно так же степень пространственной когерентности, или перекрестной корреляции между значениями поля излучения в двух точках пространства Г] и / 2 в данный момент времени, выражается через коэффициенты перекрестной корреляции.  [c.364]

Выше подробно рассмотрены вопросы устройства и функционирования интерферометра ИД способы получения идентичных диффузоров, их юстировки, изготовления прибора дан анализ геометрии картины, описаны опыты. Еще раз подчеркнем, что прибор ИД обладает двумя важными в плане учебного экспериментирования свойствами. Во-первых, это прибор светосильный, в котором высокая степень пространственной когерентности перекрывающихся пучков достигается практически без ограничения размеров освещающего источника, что обусловлено малостью апертуры интерференции расположения. Вместе с тем, малость разности хода лучей, перекрывающихся в широкой пространственной области, обеспечивает высокую степень их временной когерентности в немонохроматическом и, даже, — в белом свете. Во-вторых, интерпретация картины, наблюдаемой в опытах с нормально расположенным прибором, отличается наглядностью, а расчёт разности хода интерферирующих лучей и обоснование хода полос представляет собой сравнительно простую задачу.  [c.89]

В случае несовпадающих точек 51 и 5г, но при т = 0, величина 712(0) характеризует корреляцию колебаний в разных пространственных точках в один момент времени. Это степень пространственной когерентности световых колебаний в точках 51 и 5г. Ее модуль в соответствии с (5.55) равен видности интерференционных полос в том месте, куда колебания из 51 и 5г приходят с разностью хода ДжО (т.е. полос низкого порядка). Когда у12(0) = 1, говорят о полной пространственной когерентности, когда Сг< 1712(0) < 1 —  [c.243]

Проблемы распространения лазерного излучения в атмосферном аэрозоле представляют в настоящее время чрезвычайно важный интерес в связи с широким практическим использованием лазеров и как инструментов исследований, и как элементов устройств различного назначения, работающих через атмосферу. С точки зрения распространения в атмосферном аэрозоле лазерные пучки имеют особенности, к числу которых следует отнести прежде всего обычно высокую степень пространственно-временной когерентности и поляризации излучения, а также пространственно-угловую ограниченность пучков. Эти особенности оптических пучков не являются специфическими только для лазерных источников и могут быть получены, если в этом есть потребность, для других типов источников (газоразрядных, тепловых и т. п.). Поэтому рассмотренные в этой главе вопросы рассеяния не относятся к числу специфических только для лазерного излучения. Названием главы в данном случае подчеркивается лишь совокупность рассмотренных вопросов, представляющих основной интерес при рассеянии именно лазерных пучков.  [c.208]

По определению мы называем колебания в точках Qi и в моменты времени /х и 2 (т. е. в пространственно-временных точках Pi и Rg) когерентными или некогерентными, если когерентны или некогерентны соответствующие колебания в точке Р. При этом степень когерентности y (6) мы определяем той же величиной. Что и для колебаний в точке наблюдения.  [c.224]

При описании пространственной когерентности следует учитывать излучение света двумя пространственно разделенными точечными источниками Si и S2. В предельном случае мы полагаем Д< = О и обозначаем комплексную степень когерентности У12(0)- Следовательно, /12(0) характеризует корреляцию колебаний в один момент времени, но в разных точках пространства.  [c.202]

Разл. виды О. и. классифицируют по след, признакам по природе возникновения (тепловое, люминесцентное, синхротронное, Вавилова — Черенкова), особенностям испускания атомами и молекулами (спонтанное, вынужденное), степени однородности спектрального состава (монохроматич., немонохроматич,), степени пространственной и временной когерентности, упорядоченности ориентации электрич. и магн. векторов (естественное, поляризованное линейна, по кругу, эллиптически), степени рассеяния потока излучения (направленное, диффузное, смешанное) и т. д.  [c.459]

Весьма эффективным методом улучшения пространственных и временных характеристик излучения ПГС является инжекция маломощного внешнего сигнала с высокой степенью когерентности. В этом случае генерация развивается не от уровня шумов, а от уровня инжектируемого сигнала. Для инжекции можно использовать излучение полупроводниковых лазеров [41] или лазеров на красителе, синхронно-накачиваемых частью цуга излучения задающего генератора. В отличие от полупроводниковых лазеров, имеющих узкий диапазон перест-  [c.257]

Открытие Габора опередило на 10 лет создание когерентных источников света — лазеров. Начальный этап развития голографии, создание первой голографической системы Габора и эксперименты по записи основных го юграмм и восстановлению изображений проходили с помощью обычных источников света непрерывного излучения. До создания лазера когерентный свет получали с помощью газоразрядных лама, излучавших отдельные узкие спектральные линии. Соответствующим светофильтром выделялась требуемая линия излучения, и сконцентрированный пучок света направлялся через очень маленькое круглое отверстие. Путем такой частотной и пространственной фильтрации удалось получить световую волну с такой степенью когерентности, которая позволила продемонстрировать запись и восстановление голограммы. Габор в своих экспериментах применял ртутные дуговые лампы высокого давления. Для получения достаточной пространственной н временной когерентности он использовал точечное отверстие диа.метром около 1 мкм и с помощью узкополосного светофильтра выделял зеленую линию спектра.  [c.6]

Строго говоря, мы требуем лишь, чтобы модули комплексной степени когерентности зависели только от разностей пространственных и временных координат. Это требование мягче требования стационарности в широком смысле и удовлетворяется, например, в случае пространственных когерентных эффектов, описываемых теоремой Ван Циттерта —Цернике.  [c.451]

Применение когерентного излучения. Высокая степень монохроматичности и малая расходимость когерентного оптического излучения определяют области его практического использования. Излучение с высокой временной когерентностью может быть использовано для передачи информации на оптических частотах при решении задач, связанных с оптической интерференцией (измерение расстояний, линейных и угловых скоростей, деформаций поверхностей и т. д.) в качестве стандарта частоты. Высокая направленность пространственно-когерентного излучения обусловливает ряд его преимуществ перед некогерентным излучением небольшую величину энергетических потерь, связанных с расходимостью пучка высокое угловое разрешение, поз- воляющее точно направить луч на малый объект и существенно сократить помехи возможность пространственной фильтрации при приеме сигналов. Отсюда следует, что узконапрявленное оптическое излучение может быть эффективно использовано при передаче информации на большие расстояния, при оптической локации удаленных объектов (особенно для выделения объекта среди других целей), при измерении углов и расстояний по принципу, на  [c.343]

Используя устройство, показанное на рис. 7.9, можно добиться того, чтобы два пучка (от лазера и от ртутной лампы) имели одну н ту же степень пространственной когерентности. Чтобы получить ту же самую степень временной когерентности, в устройство на рис. 7.9 необходимо ввести фильтр, который пропускал бы только в очень узкой полосе частот, совпадающей с полосой частот генерации AvreH Не—Ые-лазера. Будем считать, что ширина полосы генерации лазера AvreH I кГц. Поскольку ширина линии излучения рассматриваемой ртутной лампы Av= = 10 Гц, благодаря фильтрации выходная мощность уменьшается еще более чем на десять порядков величины (теперь Ю- Вт). Напомним, что первоначальная мощность лампы равнялась 100 Вт Это также показывает, насколько более сложно получить явление интерференции света (для осуществления которой требуются источники света высокой когерентности), применяя некогерентные источники света.  [c.472]


Условно когерентность можно разделить на временную (продольную) и пространственную (поперечную). Схема явлений, описываемых понятиями временная и пространственная когерентность , приведена на рис. 27. Каждый атом источника 5 испускает излучение в течение какого-то определенного ограниченного времени. В результате в пространстве возникают цуги воли j, Сг, Сз, ограниченные по глубине расстоянием р, равным произведению скорости света на время излучения атома, а в поперечном направлении некоторым размером h, который зависит от размера источника /. Ограничение размера цуга в продольном направлении уменьшает степень временной когерентности источника, в поперечном — простраиственной. В целом оба явления ухудшают условия интерференции испускаемого источником излучения.  [c.75]

Во всех практических схемах гологра< ш1 в качестве источника излучения используются лазеры, генерирующие в режиме с одной поперечной модой. Обычно подбираются условия, при которых генерируется мода наиболее низкого порядка - TEMqq. В зтом случае пространственную когерентность излучения можно считать абсолютной. Специально для задач голографии разрабатываются также одночастотные лазеры, излучение которых содержит одну продольную моду и, следовательно, характеризуется весьма высокой степенью временной когерентности. Необходимость выбора такого режима генерации, приводящего к значительному ограничению мощности излучения, обусловлена тем обстоятельством, что при использовании наиболее выгодного знергетически многомодового режима степень KorepwTHO TH излучения (в первую очередь пространственная) оказывается недостаточной для регистрации качественных голограмм. Восстановленным изображениям в зтом случае присущи серьезные искажения, связанные с пространственной структурой многомодового лазерного пучка [113-114].  [c.45]

В нашем зксперименте излучение, соответствующее различным поперечным модам, равномерно распределено по пространству, и с помощью оптической системы формирования изображения из него вьщелен относительно узкий пучок. Эта ситуация зквивалентна наличию одной поперечной моды с богатым набором продольных. Позтому стабильная интерференционная картина существует во всей зоне суперпозиции опорной и объектной волн в силу вьшолнения условия пространственной когерентности - любые произвольно выбранные области зтих пучков взаимно скоррелированы. На основании такого предположения и записано выражение (3.14) для амплитуды объектной волны диффузно рассеянного многомодового излучения. Следовательно, вместо степени когерентности I7i2(r)l в зтом-случае можно рассматривать степень временной когерентности 1мт( ) I воспользоваться приведенным, например, в [74] выражением для видности интерференционных полос  [c.54]

С увеличением размеров блокирующего низкие частоты, зкрана, чго соответствует уменьшению зффективной апертуры и, следовательно, связано с необходимостью увеличения времени зкспонирования, плотность световой энергии в реконструированном поле остается практически постоянной. Об зтом свидетельствуют результаты измерения дифракционной эффективности [132] спеклограмм (рис. 44). Такой, на первый взгляд, неожиданный результат связан с тем обстоятельством, чго контраст регистрируемой совокупности пространственных несущих (спекл-структуры) не зависит от размеров апертуры фокусирующей системы. Это обусловлено тем, что степень пространственной когерентности излучения, формирующего сфокусированную спеклограмму, остается постоянной и близкой к единице, независимо от размеров диффузно рассеивающего объекта и апертуры изображающей системы.  [c.81]

С другой стороны, при переходе к предельно-развитой сдвиговой турбулентности в открытой гидродинамической системе между отдельными областями устанавливаются новые макроскопические связи (обусловленные коллективным взаимодействием образующих ее подсистем), что повышает внутренюю упорядоченность системы по сравнению с произвольными малыми флуктуациями, происходящими на молекулярном уровне. При этом множество пространственно-временных масштабов, на которых разыгрывается турбулентность, соответствует когерентному поведению огромного числа частиц, с чем связано, в частности, появление на фоне мелкомасштабного турбулентного движения, упоминавшихся в начале этого параграфа, четко упорядоченных когерентных (диссипативных) структур, с определенной степенью организации и формированием областей повышенной концентрации завихренности в виде вихревых трубок и вихревых слоев. Отсюда можно сделать, на первый взгляд, парадоксальное заключение, что развитое турбулентное движение, несмотря на его очень большую сложность, отвечает состоянию большей упорядоченности, чем более симметричное ламинарное движение. Данный феномен, показывающий, сколь трудно при сложных движениях отличить порядок от хаоса Климонтович, 1982), составляет часть общей проблемы самоорганизации (синергетики). К этой пробле-  [c.21]

Подавление ди акционных возмущений с помощью нарушения пространственной однородности или временной когерентности излучения. Дифракционные возмущения, возникающие в пучке вследствие интерференции дифрагированной и плоской волн, можнО устранить, вводя в пучок мелкомасштабные фазовые неоднородности, которые могут носить случайный или регулярный характер. Введение случайных фазовых неоднородностей, возможное, например, с помощью травленных в плавиковой кислоте стеклянных пластин, приводит к уширению угловой расходимости излучения до величины 0= (йр) , где р — характерный поперечный размер неоднородности. Подавление дифракции происходит за счет увеличения угловой расходимости, что ведет к уменьшению яркости излучения. Однако при использовании этого метода возможно восстановление высокой яркости при использовании эффектов ОВФ или усреднения (см. 4.3). Подавление дифракционно-интерференционных эффектов возможно не только при пространственном разупорядоче-нии пучка, но и при уменьшении степени его временной когерентности, характеризуемой длиной когерентности к=ст , где — время когерентности, связанное с шириной спектра излучения соотношением т =1/Ау. Для подавления дифракционных возмущений необходимо, чтобы длина когерентности была меньше длины развития дифракционных возмущений, следующей из формулы (4.25)  [c.157]

В заключение еще раз отметим высокую степень временной и простра гственной когерентности лазерных излучений. Это подтверждается в опытах с лазерными источниками, когда четкая интерференционная картина наблюдается при наложении лучей, исходящих из пространственно разделенных точек источника, создающих раз-)юсть хода в несколько десятков метров.  [c.92]

В 5.6 описаны опыты, в которых исследовалась зависимость видимости интерференционной картины от степени монохрома-гичности излучения, используемого для освещения интерферометра Майкельсона. Эти классические опыты позволили внести простейшие понятия теории когерентности и явились базой дальнейшего развития методов спектроскопии (Фурье-спектроскопия и др.). В последующем изложении мы подробно рассмотрим физический смысл понятий временной и пространственной когерентности, играющих большую роль при выборе оптимальных условий эксперимента по интерференции различных световых потоков.  [c.185]

Информационными параметрами ОИ являются пространственно-временнйе распределения его амплитуды, частоты, фазы, поляризации и степени когерентности- Для получения дефектоскопической информации используют изменение этих параметров при взаимодействии ОИ с ОК U соответствии с явле-. нпями интерференции, дифракции, поляризации, преломления, отражения, поглощения, расг еяння, дисперсии света, а также изменение характеристик  [c.48]


Смотреть страницы где упоминается термин Степень пространственной и временной когерентности : [c.239]    [c.474]    [c.457]    [c.189]    [c.32]    [c.246]    [c.453]   
Смотреть главы в:

Принципы лазеров  -> Степень пространственной и временной когерентности



ПОИСК



Временная и пространственная когерентность, степень когерентности

Временная когерентность степень

Когерентная (-ое)

Когерентное 1ь временная

Когерентное пространственная

Когерентность

Когерентность временная

Когерентность пространственная

Когерентность пространственная и временная

Когерентность степень

Ось временная

Пространственная когерентность степень



© 2025 Mash-xxl.info Реклама на сайте