Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плоские звуковые волны Уравнение движения

Наряду с только что рассмотренным случаем одномерного, параллельного некоторой оси возмущенного движения, при котором в газе происходит перемещение плоских звуковых волн, перпендикулярных оси течения, можно было бы разобрать и случай одномерного радиального распространения круговых в плоскости или сферических в пространстве звуковых волн. В этом случае линеаризированные уравнения несколько усложняются, но так же легко решаются. Существенно, что в случае круговых и сферических звуковых волн скорость распространения их будет определяться той же формулой (9), что и в случае распространения плоской звуковой волны.  [c.160]


Теория распространения плоских звуковых волн в газах без учета затухания, но с учетом нелинейности уравнений движения и уравнения состояния была еще дана Пуассоном и в более законченном виде — знаменитым немецким математиком Риманом. В этой теории, в отличие от обычной в акустике постановке вопроса, когда считается, что амплитуда давления мала (или лучше сказать — бесконечно мала) по сравнению со средним давлением в среде и акустическая скорость мала по сравнению со скоростью звука, не делалось такого ограничения. Другими словами, учитывалась конечность амплитуды звуковых волн и тем самым нелинейность процесса их распространения. По этой причине те звуковые (или ультразвуковые) волны, которые достаточно интенсивны и для которых начинают проявляться нелинейные эффекты, называют волнами конечной амплитуды. Волны конечной амплитуды — это все же не сильные  [c.375]

Однако подобное расширение области исследований с целью охвата дополнительных сложностей нелинейных явлений должно с самого начала сопровождаться жесткими ограничениями в других отношениях. В разделах 2.8—2.11 мы сосредоточим внимание на плоских звуковых волнах, хотя укажем в нескольких местах, что соответствуюш ие результаты применимы также к продольным волнам обш его вида в однородных трубах или каналах (если пренебречь трением), и в разд. 2.12 непосредственно возвратимся к случаю длинных волн в однородном открытом канале. Отбрасывая во всех этих пяти разделах любые усложнения, вызванные неоднородностью физических характеристик жидкости или поперечного сечения, ослаблением волны или влиянием эффектов трехмерности, мы сможем сфокусировать внимание непосредственно на характерных особенностях, привносимых нелинейными членами уравнений движения даже в те очень простые свойства плоских звуковых волн, которые уже полностью изучены с помош ью линейной теории в разд. 1.1.  [c.173]

Блестящ ее математическое открытие, сделанное Риманом — одним из крупнейших математиков середины XIX столетия — заложило основу всей последующей работы по нелинейной теории плоских звуковых волн. Это открытие, равносильное преобразованию уравнений движения к форме, замечательно легко поддающейся изучению для волн любой амплитуды, привело в свое время к прекрасному уровню понимания предмета.  [c.173]

Рассмотрим распространение плоской звуковой волны в газе или жидкости без учета диссипации. Исходными уравнениями служат уравнение движения идеальной жидкости, которое для одномерного движения (вдоль оси л ) запишется в виде  [c.66]


Движение плоской звуковой волны в общем случае описывается волновым уравнением  [c.38]

Рассмотрим звуковую волну, в которой все величины зависят только от одной из координат, скажем, от х. Другими словами, все движение однородно в плоскости у, z такая волна называется плоской. Волновое уравнение (64,7) принимает вид  [c.351]

При изучении звуковых волн в 64 амплитуда колебаний в волне предполагалась малой. В результате уравнения движения оказывались линейными и могли быть легко решены. Решением этих уравнений является, в частности, функция от X t (плоская волна), что соответствует бегущей волне с профилем, перемеш,ающимся со скоростью с без изменения своей формы (под профилем волны понимают распределение различных величин — плотности, скорости и т.п. — вдоль направления ее распространения). Поскольку скорость v, плотность р и давление р (как и другие величины) в такой волне являются функциями от одной и той же комбинации л t, то они могут быть выражены как функции друг от друга в виде соотношений, не содержащих явно ни координаты, ни времени (например, р — = р(р), d = у(р) и т. д.).  [c.526]

Плоская бегущая звуковая волна как точное решение уравнений движения тоже представляет собой простую волну. Мы можем воспользоваться полученными в предыдущем параграфе общими результатами для того, чтобы выяснить некоторые свойства звуковых волн малой амплитуды во втором приближении (понимая под первым приближением то, которое соответствует обычному линейному волновому уравнению).  [c.535]

Эффекты, сходные с излучением Вавилова — Черенкова, хорошо известны в области волновых явлений. Если, например, судно движется по поверхности спокойной воды (озера) со скоростью, превышающей скорость распространения волн на поверхности воды, то возникающие под носом судна волны, отставая от него, образуют плоский конус волн, угол раскрытия которого зависит от соотношения скорости судна и скорости поверхностных волн. При движении снаряда или самолета со сверхзвуковой скоростью возникает звуковое излучение ( вой ), законы распространения которого также связаны с образованием так называемого конуса Маха . Явления эти осложняются нелинейностью аэродинамических уравнений. В 1904 г. Зоммерфельд рассчитал электродинамическое (оптическое) излучение подобного рода, которое должно возникать при движении заряда со скоростью, превышающей скорость света. Однако через несколько месяцев после появления работы Зоммерфельда создание теории относительности сделало бессмысленным рассмотрение движения заряда со скоростью, превышающей скорость света в пустоте, и расчеты Зоммерфельда казались лишенными интереса. Физическая возможность появления свечения Вавилова — Черенкова связана с движением электрона со скоростью, превышающей фазовую скорость световой волны в среде, что не стоит ни в каком противоречии с теорией относительности.  [c.764]

Отличие сферического распространения волн от плоского можно просто показать на примере задачи о распространении сферической звуковой волны. Составим уравнения возмущенного движения в сферических координатах, поместив начало координат в центр возмущений (точечный источник звука). Точные уравнения будут состоять из уравнения движения, совпадающего с соответствующим уравнением в плоском случае (первое уравнение системы (54) гл. III), если только в нем заменить х на радиус-вектор г точки относительно источника возмущений, а под и понимать радиальную скорость газа.  [c.135]

Уравнения гидродинамики для среды без поглощения были использованы в 2 гл. I для изучения звуковых волн в линейном приближении. Предположим, что движение среды является плоским, т. е. переменные р, р, и зависят лишь от координаты х.  [c.183]

Ударная волна в местной сверхзвуковой зоне должна каким-то образом пересекаться со звуковой линией (мы будем говорить о плоском случае). Вопрос о характере такого пересечения нельзя считать выясненным. Если ударная волна заканчивается в точке пересечения, то в самой этой точке ее интенсивность обращается в ноль, а во всей плоскости вблизи точки пересечения движение околозвуковое. Картина течения в таком случае должна описываться соответствуюи им решением уравнения Эйлера — Трикоми. Помимо общих условий однозначности решения в физической плоскости и граничных условий на ударной волне, должны выполняться еще и следующие условия 1) если по обе стороны от ударной волны движение сверхзвуковое (так будет, если в точке пересечения кончается только ударная волна, упираясь в звуковую линию), то ударная волна должна быть приходящей по отношению к точке пересечения, 2) приходящие к точке пересечения характеристические линии в сверхзвуковой области не должны нести на себе никаких особенностей течения (особенности могли бы возникнуть лишь в результате самого пересечения и, таким образом, должны были бы уноситься от точки пересечения). Существование решения уравнения Эйлера—  [c.641]


Звуковая плоская волна не может оставаться прежней, когда в пространство, где она распространяется, внесено тело, свойства которого отличны от свойств среды. На поверхности тела возникают отражение и преломление плоской волны. В объеме тела появляется колебательное или волновое движение, а во внешнем пространстве — дополнительное поле за счет отраженных волн. В результате волновое плоское поле изменится. (Степень искажения волнового поля инородными предметами играет большую роль в технике измерений, так как прибор, который выполняет ту или иную функцию измерений, сам искажает первичное поле.) Волновое поле в присутствии инородного тела должно удовлетворять волновому уравнению, граничным условиям и условиям излучения. Действительно, плоская волна, хотя и подчиняется волновому уравнению, не может быть единственной в пространстве, как это было до внесения инородного тела, поскольку не выполняются граничные условия. Функция, удовлетворяющая волновому уравнению и граничным условиям, в этом случае состоит из функции, выражаюш,ей плоскую волну, и некоторой функции, определяющей рассеянную волну.  [c.285]

Основные уравнения несколько упрощаются в случае потенциального движения в звуковом поле, которое присуще, например, одномерным плоским, сферическим и цилиндрическим волнам. Подставив (17) в (1) и пользуясь формулами векторного анализа для безвихревого движения, приведем уравнение (1) к виду  [c.54]

И представляет сумму двух волн произвольной формы, из которых одна расходящаяся от центра, а другая сходящаяся к центру. Эго решение, за исключением наличия множителя ( // ), совершенно подобно уравнению (8.1) для волн в струне, а также уравнению для плоских звуковых волн, выведенному в 23. Таким образом, сферические волны более похожи на плоские волны, чем на цилиндрические волны. Плоские волны во время движения не изменяют своей формы и амплитуды сферические волны при распространении не изменяют своей формы, но амплитуда их уменьшается благодаря множителю (1/г) что же касается цилиндрических волн, то они при распространении меняют и форму и амплитуду, оставляя за собой след . Фиг. 40 и 41 показывают, что если цилиндр излучает звуковой импульс (пакет волн), то распространяющаяся волна имеет резкое начало, но не имеет резкого конца давление на расстояние г от оси равно нулю до момента Ь = (г/с) после начала имп льса, но оно не принимает снова равновесного значения после прохождения импульса. При плоских и сферических волнах волновой импульс обладает резким началом и концом, причём давление снова принимает равновесное значение после прохода импульса. Эти свойства служат примером общего закона (доказываемого в курсах по теории волнового движения), согласно которому волны при нечётном числе измерений (один, три, пять и т. д.) не оставляют за собой следа, тогда как при чётном числе измерений (два, четыре и т. д.) они оставляют след.  [c.343]

Имеется другой подход, основанный на гидродинамике roMoreii-ной среды (гомогенное приближение). Модель такой среды представляет собой смесь жидкости и газа, состоящего из пузырьков число пузырьков на расстоянии порядка длины звуковой волны считается достаточно большим (длинноволновое приближение). Учитываются процессы теплообмена между воздухом в пузырьке и жидкостью Для такой системы записываются уравнения движения и непрерыв ности, причем для связи между давлением газа в пузырьке и объе мом пузырька (уравнение состояния) используются решения (2.24) В линейном случае решение задачи о распространении плоской зву ковой волны в такой гомогенной среде приводит, естественно, к тем же результатам, которые получены выше методом рассеяния.  [c.168]

Физический смысл уравнений (1) заключается в том, что /Движение всякой частицы воздзЬса есть не Только определенная, вообще говоря периодическая, функция времени, но й что дви жёние это зависит dt положения данной частицы в звуковом поле. Беря для начала,простейший случай плоской волны в неогра-. ниченном пространстве и совмещая ось х-ов с направлением распространений звука, будем иМеть только одно уравнение движения  [c.10]


Смотреть страницы где упоминается термин Плоские звуковые волны Уравнение движения : [c.491]   
Смотреть главы в:

Колебания и звук  -> Плоские звуковые волны Уравнение движения



ПОИСК



Волна звуковая плоская

Волна плоская

Волны звуковые

Движение плоское

Движение с плоскими волнами

Уравнение плоской волны

Уравнения плоского движения



© 2025 Mash-xxl.info Реклама на сайте