Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Постановка задачи о поведении тела

Постановка задачи о поведении тела  [c.56]

Постановка задачи о колебании балок с нелинейными граничными условиями, а также задачи о критических режимах валов и роторов, имеющих опоры с нелинейными характеристиками, представляет определенный практический и теоретический интерес. Решение указанных проблем объяснит поведение ряда важных для современной техники упругих систем, таких как роторы турбомашин, валопроводы трансмиссий, лопатки турбомашин и т. д. Всякое твердое тело, используемое в качестве опоры (основания), распределяет внутри себя нагрузку и поэтому в заделке (как у балки на упругом основании) не будет пропорциональности между перемещением и силой не из-за нарушения закона Гука (что тоже может быть), а из-за влияния нагрузки на соседние участки [1]. Однако в машинах и различного типа инженерных сооружениях как по конструктивным соображениям, так и по технологическим причинам могут быть и более резко выраженные нелинейности. Некоторые из них могут возникать и в процессе эксплуатации машин и сооружений. Такую типичную нелинейность создают зазоры.  [c.3]


Классическая теория упругости сохраняет свое почетное место в науке о поведении деформируемого твердого тела. Ее исходные определения являются общими для всех разделов этой науки, а методы постановки и решения задач служат для нее образцами. Успехи и завоевания теорий пластичности, ползучести, упруго-вязкой среды, разрушения твердых тел не заслоняют значения методов теории упругости для обоснования приемов расчета напряженного состояния в строительных сооружениях и машинах, составляюш,их суш,ественную часть наук о сопротивлении материалов и строительной механики.  [c.11]

В науке о твердом деформируемом теле механика грунтов занимает особое положение. Выражается это в том, что механика грунтов привлекает ряд представлений и методов из различных разделов механики сплошной среды (теорий упругости, пластичности, ползучести, фильтрации). Поэтому аппарат и задачи механики грунтов выглядят довольно пестро. Зта особенность обусловлена тем, что объект исследований — грунт представляет собой сложную многофазную дисперсную систему, макроскопическое поведение которой под действием нагрузок определяется протеканием многих параллельно идущих процессов различной механической природы. Из-за многообразия природных разновидностей грунтов и условий воздействия на них эти процессы могут проявляться с различной интенсивностью и тем самым приводить к соответствующему многообразию форм макроскопического поведения среды. Задача механики грунтов, таким образом, в принципе представляется достаточно сложной. Для ее постановки и решения требуются ясное понимание и рациональная схематизация основных процессов, протекающих в грунте, и привлечение адекватных научных методов количественного анализа.  [c.203]

Полные решения задач удается найти не всегда. По-видимому, ото связано пе только с вычислительныдш труд-постяли решения полной системы уравнений, но и с вопросом о существовании таких решений. Дело в том, что теорема существования решения задач идеально пластических сред не доказана если допустить, что она и не может быть доказана (хотя постановка задач о поведении идеально пластических тел физически непротиворечива), то это следствие того, что модель идеально пластического (и, в особенности, жесткопластического) тела в некоторых случаях мон<ет оказаться крайней идеа.иизацией 1>е-альных свойств материала и конструкции.  [c.109]

Все большее значение приобретают вопросы нелинейной теории упругости, связанные с конечными деформациями. Расширение технологических возможностей привело к постановке задач о поведении реальных конструкций и материалов за пределами упругости и в области возникновения остаточных деформаций. Так появилась самостоятельная область теории деформируемого тела — теория пластичности. Она решает задачи, связанные с пластической деформацией в горячем и холодном состояниях (прокатка, ковка, штамповка, волочение), а также вопросы упрочггения материалов за счет уменьшения поверхностной шероховатости и создания заданного распределения остаточных деформаций. При этом возникла необходимость рассмотрения задач о равновесии неизо-  [c.31]


Необходимо подчеркнуть, что теорема единственности доказана нами для геометрически линейной постановки задачи теории упругости. Если условие (8.4.8) не выполнено, единственности может не существовать. Это может означать одно из двух о либо принятая модель сплошной среды некорректна, либо материал неустойчив. При- Рис. 8.4.1 мером такого неустойчивого материала служит материал с падающей диаграммой растяжения, подобной изображенной на рис. 8.4.1. Видно непосредственно, что одному п тому же значению напряжения на этой диаграмме соответствуют два разных значения деформации. Вопрос о действительном существовании таких неустойчивых упругих материалов остается открытым диаграммы вида изображенной на рис. 8.4.1 наблюдаются при описании пластического поведения и представляют зависшюсть условного напряжения, т. е. растягивающей силы от деформации. Пример неустойчивости такого рода был рассмотрен в 4.13. Для геометрически нелинейных систем теорема единственности несправедлива нарушение единственности соответствует потере устойчивости упругого тела. Рассмотрению подобного рода задач в элементарной постановке была посвящена вся четвертая глава.  [c.247]

Дальнейшее развитие проблемы п тел принадлежит Ю. Д. Соколову многочисленные исследования которого посвящены изучению особых траекторий системы свободных материальных точек, взаимно притягивающихся или отталкивающихся с силами, пропорциональными произвольной функции взаимных расстояний. Соколов обобщил на случай произвольных сил взаимо-114 действия в задаче п тел теорему Пенлеве о минимуме взаимных расстояний, теорему Шази о парном соударении в неизменяемой плоскости, теорему Дзио-бека о движении точек в неподвижной центральной плоскости при аннулировании кинетического момента системы относительно ее центра масс и теорему Слудского—Вейерштрасса об общем соударении тел. Он установил нижнюю границу радиусов сходимости разложений координат точек системы около момента регулярного движения. Обобпщв уравнение Лагранжа — Якоби, он исследовал поведение квадратичного момента инерции при стремлении t к некоторому особому моменту ti или оо. Соколов изучил траектории парного соударения в общей задаче трех тел, исследовал характер особых, Точек интегралов прямолинейного движения. Рассматривая ограниченную задачу трех тел в обобщенной постановке, он исследовал поведение искомых функций и доказал существование решения задачи, установил инвариантное соотношение, характеризующее условие соударения. Результаты этих исследований Соколов успешно применил к решению задач о притяжении к неподвижному и равномерно вращающемуся центрам.  [c.114]

Динамические задачи об установившемся движении жесткого клина в упругой полосе в дорэлеевском и сверхзвуковом диапазонах скоростей изучены Б. И. Сметаниным [25] и В. М. Александровым и Б. И. Сметаниным [1]. Форма клина выбиралась сообразно физической постановке задачи. Так, при малых скоростях движения впереди вставки бежит трещина, т.е. клин может быть тупым . При сверхзвуковом движении среда обтекает носовую часть тела безотрывно и для сохранения гипотез линейной теории упругости клин выбирается заостренным. Решение первой из этих задач о подвижной полубесконечной вставке постоянной толщины весьма сходно с упомянутым выше случаем статического расклинивания полосы. Оно построено как методом больших Л , так и в виде разложения по полиномам Чебышева I рода, которое оказалось эффективным во всем диапазоне параметра Л. Изучено поведение коэффициента интенсивности напряжений в вершине трещины в зависимости от параметров задачи.  [c.655]

Особый интерес представляют задачи о движении штампов по вязко-упругим основаниям с учетом динамических эффектов, имеющих, при этом место. Такие смешанные граничные задачи выпадают из класса вязкоупругих задач, которые могут быть решены обращением соответствующих упругих решений. Когда скорость движения одного тела относительно другого достаточно велика, возникает необходимость в специальном исследовании того, нужно ли считаться с динамическим характером задачи, т. е. принимать во внимание инерционные силы. Подобные вопросы приходится рассматривать, например, при расчете подшипников качения. Контактные задачи, предполагающие наличие скольжения, в точной постановке также являются динамическими, поскольку предполагают движение одного тела относительно другого. Явление проскальзывания двух соприкасающихся поверхностей можно наблюдать во многих задачах механики. В последнее время в связи с широким применением полимеров как конструкционных материалов в связи с проблемой переработки их в изделия также возник особенный теоретический и практический интерес к вопросам вязкоупругого поведения сплошных сред с учетом динамических эффектов. Поэтому, в частности, представляет интерес рассмотрение задачи о штампе, перемещающемся с постоянной скоростью по границе вязкоупругой полуплоскости. Подобная задача для упругой области была решена Л. А. Галиным [И].  [c.404]


Аналитические решения такого рода уравнений получены для задач в идеализированной постановке (плоскость с полу-бесконечной или конечной трещиной, пространство с дисковидной трещиной и т. д.) при воздействии гармонических и ударных нагрузок (достаточно полный их обзор дан в работах [148, 177, 178, 199, 220, 271]. Однако эти решения дают представления о реальном поведении конструкции конечных размеров только в начальный период времени (до прихода в вершину трещины волн напряжений, отраженных от границ тела). Кроме того, они не учитывают разнородности материала конструкции по механическим свойствам, изменения граничных условий по-берегам трещины в процессе ее продвижения траектория трещины считается прямолинейной, а удельная эффективная энергия, затрачиваемая на образование новых поверхностей yf, принимается постоянной и не зависящей от скорости деформирования. Очевидно, что с помощью методов, имеющих указанные ограничения, навряд ли можно дать надежные оценки работоспособности элементов конструкций сложной формы и характера нагружения. Поэтому широкое распространение получили численные методы расчета динамических параметров механики разрушения [177, 178].  [c.241]

Изучение поведения упругих тел произвольной формы под действием произвольных сил служит задачей специальной дисциплины, называемой теорией упругости. Иногда употребляют терыян математическая теория упругости, подчеркивая этим та, что, поскольку закон упругости предполагается известным, опредмение напряжений и деформаций является строго поставленной математической задачей интегрирования некоторых систем дифференциальных уравнений. Методы теории упругости, при всей их общности и точности, еще недостаточны для суждения о прочности реальных конструкций. С другой стороны, строгая постановка вопроса об определении напряжений и деформаций методами теории упругости часто приводит к непреодолимым математическим трудностям. Сопротивление материалов тесно связано с теорией упругости и широко использует ее результаты, но нельзя считать, что это упрощенная теория упругости. Пользуясь более простыми математическими методами, сопротивление материалов ставит более широкую задачу, а именно суждение о прочности элементов конструкций с возможно более полным учетом реальных свойств материалов.  [c.26]

Известно, что эллиптическая модулярная функция монотонно убывает по х в пределах от О (X = °°) до 1 (X = 0), причем в точке т = О ее производная обращается в нуль [14]. Отсюда следует, что найденная в главном члене асимптотического разложения зависимость 2о(Ре, х) от X при фиксированном Ре также монотонна (см. соотношение (4.7) и фиг. 4, а). Поэтому в главном члене асимптотического разложения второго решения задачи в прямой постановке нет, что согласуется с поведением равновесных конфигураций ледопородного тела (фиг. 3). Однако обращение производной модулярной функции, а следовательно и производной функции нуль именно при значении х = О, от-  [c.100]


Смотреть страницы где упоминается термин Постановка задачи о поведении тела : [c.129]    [c.244]    [c.78]    [c.48]   
Смотреть главы в:

Введение в задачу о движении тела в сопротивляющей среде  -> Постановка задачи о поведении тела



ПОИСК



656 —• Постановка задачи

К постановке зг ачи

Поведени



© 2025 Mash-xxl.info Реклама на сайте