Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамика стержневых систем

ГЛАВА 3 ДИНАМИКА СТЕРЖНЕВЫХ СИСТЕМ  [c.124]

В большинстве случаев динамика стержневых систем включает две основные задачи  [c.124]

В главе 3 приведены методы расчета стержневых систем, балок, рам и некоторых типов тонкостенных элементов из композиционных материалов. Дан обзор и анализ современного состояния строительной механики, основных концепций и методов расчета. Рассмотрены задачи статики, динамики и устойчивости. Отмечены особенности области применения и пути дальнейшего совершенствования используемых методов. Рассматриваемые вопросы иллюстрированы примерами.  [c.10]


Мизес рассмотрел ряд приложений исчисления к динамике твердого тела, теории упругости, строительной механике стержневых систем, гидромеханике и др.  [c.6]

В данном разделе рассматриваются вопросы теории метода граничных элементов (МГЭ) и его практического применения для решения задач статики, динамики и устойчивости стержневых систем. Основное внимание уделено изложению алгоритма метода, математическим моделям расчетных схем и реализации соотношений на персональных компьютерах.  [c.10]

Стержневые системы, у которых узлы имеют только угловые перемещения, относят к несвободным конструкциям. Их динамический расчет упрощается тем, что отпадает необходимость учета сил и моментов инерции линейно подвижных стержней, а найденные частоты собственных колебаний близки к действительным частотам. Рассмотрим примеры рещения задач динамики плоских стержневых систем.  [c.138]

Таким образом, решение задач устойчивости стержневых систем имеет тот же алгоритм и те же недостатки существующих методов, что и в задачах динамики. МГЭ позволяет освободить решение задач устойчивости от указанных недостатков. Построение соотношений устойчивости МГЭ проведем при "мертвых" нагрузках. Введем допущения  [c.179]

ОСНОВНЫЕ ВЫВОДЫ ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ АЛГОРИТМА МГЭ В ЗАДАЧАХ СТАТИКИ, ДИНАМИКИ И УСТОЙЧИВОСТИ СТЕРЖНЕВЫХ СИСТЕМ  [c.386]

Изложены теория и методы расчета типовых расчетных схем механики стержней и стержневых систем, пластин и оболочек, толстостенных цилиндров и дисков в упругом и упругопластическом состояниях, в линейной и нелинейной постановках сообщаются методы экспериментального исследования динамики и прочности конструкций.  [c.4]

Авторами для расчета линейных систем предложен подход, который основан на соотношениях метода начальных параметров, являющегося вариантом МГЭ в задачах механики стержневых систем [51 - 68]. Отличительной особенностью данного пособия является полная преемственность и единообразный подход к алгоритму задач статики, динамики и устойчивости, что создает широкие возможности для программирования и машинной реализации метода.  [c.4]

В данной главе рассматриваются свободные и вынужденные установившиеся гармонические колебания стержневых систем. Как и в статике, точные дифференциальные уравнения гармонических колебаний стержней являются нелинейными. Упрощая задачи динамики, нелинейные уравнения линеаризуют. Точность решений линейных уравнений удовлетворяют требованиям инженерных расчетов при //г > 10, поэтому они используются в инженерной практике. Линейные дифференциальные уравнения содержат частные производные по координате х и времени t. Методом Фурье разделения переменных уравнения с частными производными сводятся к уравнениям с обычными производными, описывающими перемещения стержня в амплитудном состоянии. Принцип Д Аламбера, используемый при выводе дифференциальных уравнений, позволяет рассматривать задачи динамики как задачи статики. Поэтому ниже применены предложенные правила знаков для амплитудных значений граничных параметров и нагрузки в 1.2, 1.4.  [c.91]


Второстепенные случаи фундаментальных функций (iS = 0, r = 0, S = г и т.п.) имеют место только для отдельных точек интервалов изменения Ех, со и могут быть построены аналогично. Уравнение (4.24) позволяет решать весьма большой круг задач статики, динамики и устойчивости стержневых систем, связанных с упругим основанием. Высокую точность результатов и эффективность алгоритма МГЭ проиллюстрируем на тестовом примере.  [c.146]

В данной работе предлагается принципиально новый метод расчета цилиндрических складчатых систем, основанный на алгоритме МГЭ для стержневых систем. Теоретической основой метода является вариационный метод Канторовича-Власова. Решение задачи Коши изгиба прямоугольной пластины представлено в 6.2. Его можно использовать для расчета пластинчатых систем в случаях, когда плоским напряженно-деформированным состояниям элементов можно пренебречь. Алгоритм МГЭ устраняет практически все отмеченные выше недостатки существующих методов. Так, для формирования системы разрешающих уравнений типа (1.38) не используются матричные операции, не рассматривается основная система, снимаются ограничения на условия опирания пластин по торцам (граничные условия могут быть любыми, а каждая пластина может иметь смешанные граничные условия и включать как прямоугольные, так и круглые элементы), матрица коэффициентов А сильно разрежена, хорошо обусловлена и может приметаться в задачах статики, динамики и устойчивости, возможен учет ортотропии, ребер жесткости, упругого основания, переменной толщины и т.д. Таким образом, алгоритм МГЭ охватывает практически наиболее общий случай расчета. Перечисленные преимущества сопровождаются, как это бывает всегда, и недостатками. В частности, порядок матрицы А существенно больше порядка матрицы реакций метода перемещений. Однако этот недостаток  [c.232]

Следует отметить известную работу Р. Мизеса, выпущенную в виде двух статей в 1924 г. и [ ], в которой излагается общая часть и приложения так называемого моторного исчисления (мотор — соединение слов момент и вектор , т. е. тот же винт). В этой работе автор вначале исходит из геометрического описания мотора с помощью двух прямых, а затем вводит шесть координат мотора и операции над моторами — скалярное и моторное умножение. Далее вводятся моторные диады и матрицы аффинного преобразования. В моторном, как и в винтовом исчислении, обнаруживается аналогия с векторными операциями. Однако принцип перенесения в работе Мизеса не нашел отражения. Мизесом рассмотрены приложения к динамике твердого тела, к теории упругости и к строительной механике стержневых систем, к гидромеханике и др.  [c.13]

Шире, чем обычно в общих курсах, освещены общие законы механики — вариационные принципы, энергетические теоремы и идеи общих методов (глава XV), теория тонкостенных систем, динамика (глава XVH) и теория устойчивости систем (глава ХУП1), усталость металлов (глава XIX). Дана по возможности современная трактовка методов строительной механики стержневых систем и общая нелинейная теория тонких стержней.  [c.15]

Для того чтобы быстро рассчитать какую-либо систему, необходимо досконально знать эти методы и уметь ими пользоваться. Время, потребное для выполнения расчета, зависит от особенностей расчетной схемы конструкции, от эрудиции расчетчика и от совершенства его навыков. Методом распределения неуравновешенных моментов, изложенным в настоящей работе, все вопросы прочности, устойчивости и динамики упругих стержневых систем pe tefoT H единообразно, просто и быстро. По сравнению с другими методами, этот метод является наиболее эффективным. Применение его для расчетов значительно сокращает труд и время.  [c.3]

В книге излагаются основы новой графической статики и кинематики плоских и пространственных стержневых систем и механизмов. Рассматриваются также задачи динамики твердого тела, элементы прикладного графического анализа и т. п. В качестве математического аппарата используются весовая линия , векторы и их производные, бивекторы и тервекторы. Результаты графических операций с использованием математического анализа в одинаковой степени переносятся как в статику, так и в кинематику. Этим достигается общность и единство исследования задач векторной геометрии и механики.  [c.2]


Развитию методов решения дифференциальных уравнений, коэффициенты которых содержат обобщенные функции одного вида йодной переменной, например, в строительной механике скошенных тонкостенных систем, посвящены работы И. Ф. Образцова, Г. Г. Онанова [117, 118], а статике, динамике и устойчивости стержневых систем — работы В, А. Лазаряна, С. И. Конашенко [96]. Теоремы единственности и существования решения дифференциальных уравнений параболического типа с разрывными коэффициентами доказаны А. А. Самарским [138].  [c.8]

На рис. 1, а изображена модель исследуемой пятипролетной рамы, ниже (рис. 1, б)—опытный и расчетный (рис. 1, в) спектры частот, а на рис. 2 — экспериментальные резонансные формы колебаний той же рамы, близкие к теоретическим формам собственных колебаний пятипролетной балки, показанным на рис. 3. Эти, теперь общеизвестные результаты, тогда рассматривались как шаг вперед в теории колебаний стержневых систем. Вскоре были опубликованы Динамика сооружений  [c.22]

В первой главе рассмотрены вопросы теории метода, построения основных расчетных соотношений, дано описание внешней нагрузки, введены по11ятия о граничных параметрах. Во второй главе показано применение предлагаемого алгоритма для решения задач статики стержневых систем, учета продольных перемещений и деформации сдвига. В третьей и четвертой главах описаны задачи динамики и устойчивости стержневых систем. Пятая глава посвящена выводам и анализу практического применения нового метода. В шестой главе рассмотрены отдельные задачи теории тонких пластин, которые могут быть решены предлагаемым методом.  [c.4]

Первоначально предполагалось, что в этой книге будут освеш,аться и вопросы, связанные с колебаниями ванто-во-стержневых систем. Однако в процессе работы над рукописью выяснилось, что рассмотрение вопросов динамики требует существенного расширения объема и поэтому в настоящей работе излагаются лишь вопросы статики вантово-стержневых систем.  [c.4]

Две указанные выше классификации сил, действующих на материальную систему, играют ва>1<ную роль в динамике, поскольку с каждой из них связывается целая группа общих теорем и последующих конкретных приложений. Не будет поэтому лишним вспомнить, что аналогичные обстоятельства имели место в статике, где сначала, разделив силы на внешние и внутренние, мы пришли к основным условиям равновесия (т. I, гл. XII), приложимым в качествь необходимых к всевозможным типам материальных систем (например, к стержневым системам, нитям и т. д., гл. XIV) и, в частности, являющимся достаточными для равновесия твердого тела (гл. Х1П) затем в общей статике (гл. XV), отправляясь от разделения сил на активные силы и реакции и присоединяя ограничительные предпо--ложения о природе связей (отсутствие трения), мы пришли, примени принцип виртуальной работы, к исключению неизвестных реакций н условий равновесия.  [c.256]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]



Смотреть страницы где упоминается термин Динамика стержневых систем : [c.12]    [c.132]    [c.9]    [c.40]    [c.74]    [c.192]    [c.1]    [c.557]    [c.311]   
Смотреть главы в:

Строительная механика Специальный курс Применение метода граничных элементов  -> Динамика стержневых систем



ПОИСК



412, 413 стержневые

Г лава 6 Основные выводы практического применения алгоритма МГЭ в задачах статики, динамики и устойчивости стержневых систем

Елава 3 Динамика стержневых систем

Основные выводы практического применения алгоритма МГЭ в задачах статики, динамики и устойчивости стержневых систем

Система стержневая

Системы Динамика

Стержневые системы систем



© 2025 Mash-xxl.info Реклама на сайте