Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вторичные действия

Установка кондиционирования воздуха снабжается приборами автоматического регулирования. Последние делятся на управляющие приборы (первичного действия) и исполнительные (вторичного действия).  [c.521]

Вторичное действие катодной защиты в морских условиях (образование карбонатных защитных пленок)  [c.11]

Нагрев металла катода объясняется следующим. В результате вторичного действия тока, проходящего через электролит, на катоде выделяется водород, а на аноде кислород. Вследствие плохой- проводимости образующейся на катоде газовой оболочки при достаточно высоком напряжении тока выделяется большое количество тепла, которое и нагревает катод (обрабатываемое изделие).  [c.143]


Для условий защиты металла оборудования в периоды остановок перспективным является использование анодных ингибиторов, т. е. веществ, предотвращающих протекание процесса образования ионов металла на участках, выполняющих функции анодов. К анодным ингибиторам относятся ингибиторы окисляющего действия (хроматы, нитриты), действие которых на анодный процесс основано на образовании защитной окисной пленки на металле, способствующей его пассивации. Тормозить анодный процесс могут также анодные ингибиторы вторичного действия, образующие нерастворимые продукты, осаждающиеся на поверхности металла и тормозящие анодный процесс. К таким ингибиторам могут быть отнесены щелочные соединения, например аммиак, карбонаты аммония, едкая щелочь и т. п.  [c.64]

Вторичное действие звука связано с его восприятием органами слуха. Биологическое значение этого действия определяется интересами сообщества (популяций, видов). Следует заметить, что в школе И. П. Павлова считают целесообразным и это вторичное действие разделять на два временных этапа — первичный и вторичный. На этом уровне эволюционного развития животных под влиянием звука возник и новый уровень  [c.66]

Возникновение на катодно защищаемой конструкции вторичных защитных пленок, оказывающих добавочное защитное действие, может нарушить указанное в пункте 4 табл. 41 правило, т. е. может наблюдаться соотношение (/к)внешн К-  [c.296]

В змеевиках действие вторичной циркуляции распространяется на всю длину трубы.  [c.431]

Напряжения сжатия, которые возникают в продольном направлении, являются следствием эффекта Пуассона и стесненности деформации, т. е. представляют собой вторичный эффект, вызванный действием напряжений в вертикальном направлении. Поэтому предполагаем, что они по величине меньше, чем вертикальные. Учитывая это, вводим для напряжений обозначения, указанные на рис. 168 (это будут главные напряжения, так как т в гранях бруса, очевидно, отсутствуют). Тогда имеем  [c.178]

Поглощение света с точки зрения классической теории. Под действием электрического поля световой волны с круговой частотой со отрицательно заряженные электроны атомов и молекул смещаются относительно положительно заряженных ядер, совершая гармоническое колебательное движение с частотой, равной частоте действующего поля. Колеблющийся электрон, превращаясь в источник, сам излучает вторичные волны. В результате интерференции /j падающей волны со вторичной в среде возникает волна с амплитудой, отличной от амплитуды вынуждающего поля. Поскольку интенсивность есть величина. Рис. 11.10 прямо пропорциональная квадрату амплитуды, то соответственно изменится и интенсивность излучения, распространяющегося в среде другими словами, не вся поглощенная атомами и молекулами среды энергия возвращается в виде излучения — произойдет поглощение. Поглощенная энергия может превратиться в другие виды энергии. В частности, в результате столкновения атомов и молекул поглощенная энергия может превратиться в энергию хаотического движения — тепловую.  [c.279]


Если А — массовое число расщепляющегося под действием нейтронов тяжелого изотопа, то массовое число возбужденного составного ядра Ло=Л-Ь1, а среднее число вторичных нейтронов V на один акт деления будет равно  [c.172]

Согласно волновой теории механизм рассеяния рентгеновского излучения объясняется возникновением вторичных электромагнитных волн в результате вынужденных колебаний электронов в атомах вещества под действием переменного электрического поля первичного пучка. При этом частота рассеянного рентгеновского излучения должна почти точно совпадать с частотой первичного излучения. Наблюдаемое же различие частот первичного и рассеянного излучений волновая теория объяснить не могла.  [c.302]

При освещении кюветы сфокусированным излучением аргонового лазера хорошо наблюдается движение конвекционных потоков частиц, находящихся вне фокуса (рассмотрение действующих в таких условиях сил см. в УФН, 110, 1973). В течение нескольких секунд, а иногда и минут можно наблюдать яркое свечение рассеянного на взвешенной частице лазерного излучения (рис. 2.27). Следует заметить, что в этом эффектном опыте проявляются особенности лазерного излучения, которое можно сфокусировать в пятно диаметра л и создать условия, позволяющие освободиться от вторичных эффектов, которые при использовании тепловых источников во много раз превышают исследуемое явление.  [c.112]

Разобранные в настоящей главе случаи интерференции света дают возможность наблюдать это явление на специально осуществляемых опытах. Однако явление встречи двух или нескольких когерентных волн, между которыми наблюдается интерференция, имеет место, по существу, во всяком оптическом процессе. Распространение света через любое вещество, преломление света на границе двух сред, его отражение и т. д. суть процессы такого рода. Распространение света в веществе сопровождается воздействием световой электромагнитной волны на электроны (и ионы), из которых построено вещество. Под действием световой волны эти заряженные частицы приходят в колебание и начинают излучать вторичные электромагнитные волны с тем же периодом, что и у падающей волны. Так как движение соседних зарядов обусловливается действием одной и той же световой волны, то вторичные волны определенным образом связаны между собой по фазе, т. е. являются когерентными. Они интерферируют между собой, и эта интерференция позволяет объяснить явления отражения, преломления, дисперсии, рассеяния света и т. д. Мы познакомимся в дальнейшем с объяснением перечисленных явлений с указанной точки зрения. В настоящем же параграфе мы остановимся на одном частном случае из описанного ряда явлений.  [c.89]

Так как фазы всех вспомогательных источников определяются возмущением, идущим из Ь, то они строго согласованы между собой, и, следовательно, вспомогательные источники когерентны. Поэтому вторичные волны, исходящие из них, будут интерферировать между собой. Их совокупное действие в каждой точке может быть определено как интерференционный эффект, и следовательно, идея Гюйгенса о специальной роли огибающей перестает быть допущением, а должна явиться лишь следствием законов интерференции. Согласно приведенному выше постулату Френеля вопрос о вспомогательных источниках, заменяющих , решается однозначно, как только выбрана вспомогательная поверхность 5. Выбор же этой поверхности вполне произволен поэтому для каждой конкретной задачи ее следует выбрать наивыгоднейшим для решения способом. Если вспомогательная поверхность 5 совпадает с фронтом волны, идущей из Ь (представляет собой сферу с центром в Е), то все вспомогательные источники будут иметь одинаковую фазу. Если же выбор 5 сделан иначе, то фазы вспомогательных источников не одинаковы, но источники, конечно, остаются когерентными.  [c.152]

В качестве такой вспомогательной поверхности S выберем поверхность фронта волны, идущей из А (поверхность сферы с центром А, рис. 8.3). Вычисление результата. интерференции вторичных волн очень упрощается, если применить следующий указанный Френелем прием для вычисления действия в точке В соединяем Л с и разбиваем поверхность S на зоны такого размера, чтобы расстояния от краев зоны до В отличались на /2 , т. е.  [c.153]


Отрицание наличия обратной волны заключается до известной степени в допущении Френеля о зависимости амплитуды вторичных волн от угла ф между нормалью к вспомогательной поверхности и направлением на точку наблюдения. Согласно этому допущению амплитуда убывает по мере возрастания угла ф и становится равной нулю, когда абсолютная величина ф равна или больше 90°. Рис. 8.21 поясняет это допущение, причем убывание амплитуды представлено убыванием толщины кривой. Так как при ф > 90° амплитуда излучения вспомогательных источников обращается в нуль, то обратная волна невозможна. Однако, как уже указывалось, допущение относительно распределения амплитуд есть дополнительная гипотеза принципа Френеля. Можно сделать понятным отсутствие обратной волны следующими рассуждениями. Действительно, из каждой точки поверхности 5 возмущение распространяется и вперед и назад. Но перед поверхностью 5 возмущения еще нет, и действие сводится к образованию такого возмущения, которое мы и наблюдаем. Сзади же 5 возмущение уже пришло, и действие от 5 сводится к тому, чтобы это пришедшее возмущение компенсировать. В результате обоих действий — прямого и обратного —  [c.169]

В 33 мы уже упоминали, что постулат Френеля, служащий для характеристики вторичных волн, интерференция которых объясняет все процессы распространения волн, являлся некоторой гипотезой, догадкой Френеля. Проведение расчетов по методу Френеля и сравнение их с опытом показывают, что гипотезу эту надо несколько изменить ввести дополнительный фактор, учитывающий наклон вспомогательной поверхности к направлению действия, обосновать добавочными рассуждениями отсутствие обратной волны и изменить начальную фазу вторичных волн на Если первые два дополнения привлекаются из соображений более или менее наглядных, то опережение фазы считается иногда чем-то таинственным , как выразился Рэлей в своей Волновой теории света . Конечно, поскольку постулат Френеля является не чем иным, как некоторым рецептом, дающим общий метод решения задач волновой оптики, то очевидно, что и видоизменение этого постулата не представляет ничего особенного просто более тщательный анализ показывает, что надо пользоваться несколько иным рецептом решения волновых задач, обеспечивающим лучшее согласие с опытом.  [c.170]

Член ( 2 (р) в (60.7) пропорционален полю Е (р), созданному в плоскости голограммы волнами от исследуемого объекта. Ясно поэтому, что поле, формируемое соответствующими вторичными источниками Гюйгенса — Френеля, идентично тому полю, которое создается самим объектом в отсутствие голограммы. Таким образом, эта часть поля отвечает мнимому изображению объекта. Можно сказать поэтому, что наблюдение мнимого изображения эквивалентно рассматриванию самого предмета через отверстие, совпадающее с рабочей частью голограммы. В свете сказанного способность голограммы восстанавливать изображение с помощью небольшой части своей поверхности получает почти тривиальное объяснение указанная способность эквивалентна тому, что при непосредственном рассматривании какой-либо точки предмета используется только та часть ее излучения, которая ограничена действующим конусом лучей, попадающих в глаз.  [c.247]

В такой постановке сформулированная общая задача успешно разрешена, однако требуемые вычисления очень громоздки из-за необходимости учитывать действие на каждый атом не только падающей волны, но и вторичных волн от всех остальных атомов.  [c.470]

Особенности отражения света от металлической поверхности обусловлены наличием в металлах большого числа электронов, настолько слабо связанных с атомами металла, что для многих явлений эти электроны можно считать свободными. Вторичные волны, вызванные вынужденными колебаниями свободных электронов, порождают сильную отраженную волну, интенсивность которой может достигать 95% (и даже больше) интенсивности падающей, и сравнительно слабую волну, идущую внутрь металла. Так как плотность свободных электронов весьма значительна (порядка 10 в 1 см ), то даже очень тонкие слои металла отражают большую часть падающего на них света и являются, как правило, практически непрозрачными. Та часть световой энергии, которая проникает внутрь металла, испытывает в нем поглощение. Свободные электроны, приходя в колебание под действием световой волны, взаимодействуют с ионами металла, в результате чего энергия, заимствованная от электромагнитной волны, превращается в тепло.  [c.489]

Приборы вторичного действия (исполнительные механизмы) — жалюзийные смесительные заслонки (дампер), трёхходовой клапан для смешения воды, регулировочные клапаны.  [c.521]

Все это говорит о сложном характере действия ацетиленовых ингибиторов. Учитывая, что продукты химического превращения часто оказывают решающее действие в торможении коррозии, ацетиленовые добавки были названы, проингибиторами [27] или ингибиторами вторичного действия. В работах [84, 103, 104] обнаружены сложные  [c.99]

Уксусный альдегид можно считать проингибитором или ингибитором вторичного действия, так как высоким защитным сво1 ством обладают в основном продукты его превращения. Частичное осмоление альдегида происходит и в объеме раствора, в котором находятся гало-генид-ионы. В серной кислоте альдегид не подвергается превращениям, и поэтому малоэффективен как ингибитор. Интересно отметить, что уксусный альдегид, как ингибитор, а вернее продукты его химического превращения, проявляет синергизм с азотсодержащими ПАВ катионного типа. Основания Шиффа, полученные взаимодействием различных алифатических и ароматических альдегидов и аминов, значительно активнее, чем исходные вещества, тормозят коррозию металлов [120, 121]. Не исключено, что при использовании смеси аминов с альдегидами в качестве ингибиторов коррозии каталитически активных переходных металлов на их поверхности образуются основания Шиффа, чем и объясняется отмеченный выше синергизм.  [c.104]


Вторичные действия. До сих пор мы предполагали, что Солнце остается неподвижным. Однако оно движется и том же направлении, как и Луна. Было показано, что если Луна близка к апогею, а Солнце к линии апсид, то нормальная составляющая заставляет апсиды двигаться вперед. Это движение вперед стремится сохранить положение орбиты по отношению к положению Солнца, и движение вперед апснд увеличивается и. целается более продолжительным. С другой стороны, если Луна находится в перигее и Солнце вблизи линии апсид, то линия апсид движется обратно Солнце движется в одну сторону, а линия апсид— в дру1-ую. Такое соотношение между орбитами Солнца и Луны быстро нарушается, и обратное движение оказывается меньше, чем оно было бы, если бы Солнце оставалось неподвижным. Подобным образом для каждого относительного положения линии апсид движение вперед увеличивается и движение назад уменьшается.  [c.312]

Наряду с окислителями тормозить анодный процесс могут также анодные замедлители вторичного действия, образующие на поверхности металла кроющие пленки. Действие подобных замедлителей объясняется протеканием вторичных (химических) процессов взаимодействия ионов растворяющегося металла с замедлителем, осаждением образовавшихся нерастворимых продуктов на корродирующей поверхности металла и торможением вследствие этого главным образом анодного процесса. К подобным замедлителям коррозии черных металлов можно отнести щелочные соединения, например NaOH или ЫагСОз, реакции с которыми приводят к выделению на корродирующей поверхности гидроокиси металла. По отношению к железу и некоторым другим металлам замедлителями этого класса являются также фосфаты, действие которых приводит к выделению на анодных участках нерастворимых фосфатов металла. Для алюминия и его сплавов, а также для железа надо отметить подобное же действие силикатов щелочных металлов (жидкое стекло), добавление которых приводит к образованию нерастворимых силикатов защищаемого металла. Сюда же относятся соли бензойной кислоты и щелочных металлов, образующие на поверхности стали пленки бензоатоз железа [21]. Ингибирующее действие добавок этого типа усиливается в результате одновременного действия окислителя, растворенного в коррозионной среде.  [c.272]

Напряжения второго рода возникают вследствие неоднородности кристаллического строения и различия физико-механических свойств фаз и структур сплавов. Фазы, например в черных металлах, феррит, аустенит, цементит, графит обладают различной кристаллической решеткой их плотность, прочность и упругость, теплопроводность, теплоемкость, характеристики теплового расширения различные. Структуры, представляющие собой смесь фаз, например перлит в сталях, а также закалочные структуры, в свою очередь, обладают отличными от смежных структур свойствами. Различие кристаллической ориентации зерен металла обусловливает анизотропию физико-механических свойств микрообъемов металла. В результате совместного действия этих факторов возникают внутри-зеренные и межзеренные напряжения еще в нронессе первичной кристаллизации и при последующих прев эащениях во время охлаждения. При высоких температурах напряжения уравновешиваются благодаря пластичности материала. Однако они проявляются в низкотемпературной области, возникая при фазовой перекристаллизации и выпадении вторичных и третичных фаз (фазовый наклеп), при каждом общем или местном повышении температуры (из-за различия теплопроводности и коэффициентов линейного расширения структурных составляющих), приложении внешних нагрузок (из-за различия и анизотропии механических свойств), а также нрп наклепе, наступающем в результате общего или местного перехода напряжений за предел текучести материала.  [c.152]

В зависимости от величины перегрузок и длительности их действия, вида цикла, степени периодичности, размеров образца и других факторов переменные нагрузки могут действовать упрочняюще или разупрочняюще. Смещение вторичных кривых вверх и вправо по отношению к первичной кривой (рис. 187) свидетельствует об упрочнении материала и увеличении срока службы в пределах ограниченной долговечности. Обратные смещения свидетельствуют о разупрочнении материала и сокращении ограниченной долговечности.  [c.308]

Клеевые соединения собирают на посадках скольжения или переходн ,1х. При распрессовке клеевая пленка разрушается. Для вторичной сборки необходимо растворить остатки пленки и нанести свежий слой клея. Прочность клеевых соединений падает с повышением температуры. При температуре более 200—250°С клеевые пленки разрушаются. Это ограничивает приметшость клеевых соединений. Даже в холодных соединениях под действием циклических нагрузок могут возникать местные очаги повышенного тепловыделения, выводящие клеевое соединение из строя.  [c.493]

Все изложенные выше примеры, анализ доступных литературных данных позволяют сделать вывод о том, что вихревые трубы использовались лишь в условиях отсутствия вторичного центробежного поля сил, накладываемого на основное, создаваемое закручивающим устройством. Поэтому отсутствуют исследования характеристик процесса энергоразделения в вихревых трубах в условиях воздействия на них вторичного поля инерционных сил. Тем не менее, очевидно, что оно определенным образом искажает обычную картину течения в камере энергоразделения вихревых труб. Такое воздействие должно сопровождаться не только изменением характеристик макроструктуры потока, но и характеристик его микроструктуры. На каждый турбулентный микро-или макровихрь в зависимости от его расположения в объеме камеры энергоразделения и собственных размеров действует своя дополнительная сила инерции, зависящая от частоты вращения ротора и радиуса от центра элемента вихря до оси.  [c.379]

О воздействии радиации на коррозионное поведение металлов известно мало. Влияние облучения на коррозионные свойства можно сравнить с действием холодной деформации, с той разницей, что при облучении в коррозионной среде образуются локальные пики смещения и химические вещества (например, HNOj или HgOa), влияние которых на коррозию вторично. Это значит, что стойкость тех металлов, скорость коррозии которых лимитируется диффузией кислорода, практически не изменится после облучения. В кислотах скорость коррозии облученной стали (но не чистого железа) повысится, а стойкость облученного никеля останется прежней, так как он менее чувствителен к механической обработке.  [c.154]

Законы преломления и отражения, определяя направления отраженного и преломленного лучей, не дают никаких сведений об интенсивностях и фазах. Задачу определения интенсивностей и фаз отраженного и преломленного лучей можно решить, исходя из взаимодействия электромагнитной волны со средой. Согласно электронной теории, под действием электрического поля падающей волны электроны среды приводятся в колебания в такт с возбуждающим полем — световой волной. Колеблющийся электрон при этом излучает электромагнитные волны с частотой, равной частоте возбуждающего поля. Излученные таким образом волны называются вторичными. Вторичные Bojnibi оказываются когерентными как с первичной волной, так и мемаду собой. В результате взаимной интерференции происходит гашение световых волн во всех направлениях, кроме двух — в направлениях преломленного и отраженного лучей. В принципе можно, решая задачу интерференции, определить направления распространения, интенсивности и фазы обоих лучей. Однако решение ее, хотя и привело бы к результатам, согласующимся с опытными данными, представляется довольно сложным. Эту же задачу можно решить более простым путем,- используя систему уравнений Максвелла.  [c.45]


Взаимодействие света с металлом приводит к возникновению вынужденных колебаний свободных электронов, находящихся внутри металлов. Такие колебания вызывают вторичные волны, приводящие к сильному отражению света от металлической поверхности и сравнительно слабой волне, идущей внут])ь металла. Чем больше электропроводность металлов, тем сильнее происходит отражение света от нх поверхности. В идеальном проводнике, для которого а -> оо, поглощение полностью отсутствует н весь падающий на его поверхность свет отражается. Поэтому заметный слой металла является непрозрачным для видимого света. Сильное поглощение проникающей внутрь металла световой волны обусловлено превращением энергии волны в джоулево тепло благодаря взаимодействию почти свободных электро1Юв, испытываюидих вынужденные колебания под действием световой волны.  [c.61]

Умножитель фотоэлектронный сквозного действия — фотоумножитель, эмиттеры которого выполнены в виде сеток или металлических пластин типа жалюзи вторичные электроны, испускаемые предыдущим эмиттером, попадают на последующий эмиттер непосредственно под действием разности потенциалов на этих эмиттерах необходимость ( кусировки электронов при такой конструкции фотоумножителя отпадает [3 ].  [c.162]

Измерение столь малой силы, действующей на отражающую поверхность (в яркий солнечный день ка 1 м земной поверхности действует сила 0,5 дин), была задачей отнюдь не легкой. Эти трудности усугублялись тем, что в годы, когда экспериментировал Лебедев, техника высокого вакуума была развита слабо. При г1едостаточно высоком разрежении вторичные эффекты (термический и др.) играют большую роль. Достаточно указать, что если наблюдать воздействие света на два помещенных внутри откачанной колбы крылышка, одно из которых сделано блестящим, а второе — зачерненным (именно так часто иллюстрируют явление светового давления), то система начинает вращаться в направлении, противоположном предсказанному теорией.  [c.107]


Смотреть страницы где упоминается термин Вторичные действия : [c.313]    [c.113]    [c.293]    [c.314]    [c.45]    [c.14]    [c.312]    [c.312]    [c.45]    [c.24]    [c.182]    [c.217]    [c.11]    [c.170]    [c.271]    [c.256]   
Смотреть главы в:

Введение в небесную механику  -> Вторичные действия



ПОИСК



Вторичный пар



© 2025 Mash-xxl.info Реклама на сайте