Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения равновесия в перемещениях и метод упругих решений

Дифференциальные уравнения равновесия в перемещениях и метод упругих решений.  [c.121]

В теории упругости имеются три системы соотношений (1) дифференциальные уравнения равновесия (2) соотношения, связывающие деформации с перемещениями, и условия совместности (3) уравнения состояния материала. Для любого тела, имеющего конечные размеры, системы (1) и (2) дополняются граничными условиями. В данной главе выводится каждое из этих соотношений, а затем в общих чертах показано, как нз совокупности указанных соотношений получить определяющую систему уравнений. В заключение приводятся некоторые замечания, касающиеся вопроса единственности решения задач упругости и его значимости для метода конечных элементов.  [c.107]


В статьях [55, 56] предлагается новый вариант теории трехслойных пластин с несжимаемым в поперечном направлении заполнителем, основанный на гипотезе ломаной нормали. Уравнения равновесия в перемещениях получены с помощью принципа Лагранжа. Формальным введением малого параметра в дифференциальные уравнения решение исходной задачи сведено к итерационному процессу, содержащему решение задачи об изгибе пластины на упругом основании и плоской задачи теории упругости. Точное решение получено для прямоугольной шарнирно-опертой по контуру пластины, найдена оценка погрешности приближенного решения, получаемого после произвольного числа итераций. Этими же авторами предложен метод расчета осесимметричных круглых трехслойных пластин с легким сжимаемым заполнителем на действие нагрузок, симметричных и обратносимметричных относительно срединной плоскости. Разложение нагрузок на составляющие позволяет упростить определение постоянных, входящих в общее решение задачи.  [c.13]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]


Здесь представим только общие соображения по расчету нелинейных систем, поскольку эта тема выходит за рамки данной работы. Нелинейные задачи деформирования стержней, пластин и оболочек весьма разнообразны и каждая задача требует индивидуального подхода. Однако, если нелинейные модули образуют целостную систему, то для узловых точек (линий) всегда будут справедливы уравнения равновесия между статическими параметрами и уравнения совместности перемещений между кинематическими параметрами. Это значит, что топологическая матрица С в алгоритме МГЭ для нелинейных систем будет формироваться из анализа матриц X ж Y точно так же, как для упругих систем. Основные же трудности решения нелинейных задач заключаются в определении внутреннего содержания матриц А В, т.к. построить фундаментальные функции нелинейных дифференциальных уравнений за небольшим исключением не удается. В этой связи получили развитие различные подходы к решению нелинейных краевых задач [83]. К первому направлению относятся проекционные и вариационные методы типа методов Бубнова и Ритца, методы конечных разностей и конечных элементов. Этими методами нелинейные краевые задачи сводятся к системам нелинейных  [c.512]

Первое систематическое рассмотрение устойчивости равновесия упругих тел принадлежит Дж. Брайану Он выяснил пределы применимости теоремы Кирхгофа и показал, что при условии малых деформаций она отпадает, если только один или два размера тела можно считать малыми. При этом явление неустойчивости может иметь место в пределах упругости, если произведение модуля упругости Е на квадрат отношения малого размера к конечному будет того же порядка, что и предел упругости материала. Дальнейшая разработка общей теории устойчивости равновесия упругих тел принадлежит Р. Саусвеллу Он устраняет ограничение относительно малости деформаций и оперирует с идеальным телом бесконечно большой прочности. При этих условиях и тела, у которых все размеры одного порядка, могут оказаться в состоянии неустойчивого равновесия. Исходя из однородного напряженного состояния тела, Р. Саусвелл дает точкам тела весьма малые перемещения и, v, w ) и для этой отклоненной формы пишет дифференциальные уравнения нейтрального равновесия, причем считает начальные деформации конечными. То соотношение между внешними силами и размерами тела, при котором полученные уравнения дают для и, у и w решения, удовлетворяющие условиям на поверхности, определяет критическое значение нагрузки в рассматриваемом случае. Применяя свой общий метод к тонким стержням и пластинкам, Р. Саусвелл нашел, что имеющееся решения задач устойчивости являются лишь первыми приближениями, хотя и вполне достаточными для практических приложений. Мы в дальнейшем ограничимся этими приближенными решениями, отсылая интересующихся теорией вопроса к работе Р. Саусвелла.  [c.258]


Смотреть главы в:

Пластичность Ч.1  -> Дифференциальные уравнения равновесия в перемещениях и метод упругих решений



ПОИСК



290 — Уравнения дифференциальные и их решение равновесия и их решение

К упругих решений

Метод дифференциальный

Метод перемещений

Метод перемещений и метод сил

Метод равновесия

Метод решения уравнений

Метод упругих решений

Методы Уравнения дифференциальные

Методы Уравнения равновесия

Методы Уравнения упругости

Решение в перемещениях

Решение дифференциального уравнения

Решения метод

Упругие перемещения

Уравнение метода сил

Уравнение перемещений

Уравнения Уравнения упругости

Уравнения дифференциальные равновесия

Уравнения равновесия в перемещения

Уравнения равновесия сил

Уравнения равновесия уравнения

Уравнения упругого КА

Уравнения упругого равновесия в перемещениях

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте